421 research outputs found

    Subject-independent P300 BCI using ensemble classifier, dynamic stopping and adaptive learning

    Full text link
    © 2017 IEEE. Brain-computer interfaces (BCIs) are used to assist people, especially those with verbal or physical disabilities, communicate with the computer to indicate their selections, control a device or answer questions only by their mere thoughts. Due to the noisy nature of brain signals, the required time for each experimental session must be lengthened to reach satisfactory accuracy. This is the trade-off between the speed and the precision of a BCI system. In this paper, we propose a unified method which is the integration of ensemble classifier, dynamic stopping, and adaptive learning. We are able to both increase the accuracy, as well as to reduce the spelling time of the P300-Speller. Another merit of our study is that it does not require the training phase for any new subject, hence eliminates the extensively time-consuming process for learning purposes. Experimental results show that we achieve the averaged bit rate boost up of 182% on 15 subjects. Our best achieved accuracy is 95.95% by using 7.49 flashing iterations and our best achieved bit rate is 40.87 bits/min with 83.99% accuracy and 3.64 iterations. To the best of our knowledge, these results outperformed most of the related P300-based BCI studies

    Application of P300 Event-Related Potential in Brain-Computer Interface

    Get PDF
    The primary purpose of this chapter is to demonstrate one of the applications of P300 event-related potential (ERP), i.e., brain-computer interface (BCI). Researchers and students will find the chapter appealing with a preliminary description of P300 ERP. This chapter also appreciates the importance and advantages of noninvasive ERP technique. In noninvasive BCI, the P300 ERPs are extracted from brain electrical activities [electroencephalogram (EEG)] as a signature of the underlying electrophysiological mechanism of brain responses to the external or internal changes and events. As the chapter proceeds, topics are covered on more relevant scholarly works about challenges and new directions in P300 BCI. Along with these, articles with the references on the advancement of this technique will be presented to ensure that the scholarly reviews are accessible to people who are new to this field. To enhance fundamental understanding, stimulation as well as signal processing methods will be discussed from some novel works with a comparison of the associated results. This chapter will meet the need for a concise and practical description of basic, as well as advanced P300 ERP techniques, which is suitable for a broad range of researchers extending from today’s novice to an experienced cognitive researcher

    BCIAUT-P300: A Multi-Session and Multi-Subject Benchmark Dataset on Autism for P300-Based Brain-Computer-Interfaces

    Get PDF
    There is a lack of multi-session P300 datasets for Brain-Computer Interfaces (BCI). Publicly available datasets are usually limited by small number of participants with few BCI sessions. In this sense, the lack of large, comprehensive datasets with various individuals and multiple sessions has limited advances in the development of more effective data processing and analysis methods for BCI systems. This is particularly evident to explore the feasibility of deep learning methods that require large datasets. Here we present the BCIAUT-P300 dataset, containing 15 autism spectrum disorder individuals undergoing 7 sessions of P300-based BCI joint-attention training, for a total of 105 sessions. The dataset was used for the 2019 IFMBE Scientific Challenge organized during MEDICON 2019 where, in two phases, teams from all over the world tried to achieve the best possible object-detection accuracy based on the P300 signals. This paper presents the characteristics of the dataset and the approaches followed by the 9 finalist teams during the competition. The winner obtained an average accuracy of 92.3% with a convolutional neural network based on EEGNet. The dataset is now publicly released and stands as a benchmark for future P300-based BCI algorithms based on multiple session data

    P300 detection and characterization for brain computer interface

    Get PDF
    Advances in cognitive neuroscience and brain imaging technologies have enabled the brain to directly interface with the computer. This technique is called as Brain Computer Interface (BCI). This ability is made possible through use of sensors that can monitor some of the physical processes that occur inside the brain. Researchers have used these kinds of technologies to build brain-computer interfaces (BCIs). Computers or communication devices can be controlled by using the signals produced in the brain. This can be a real boon for all those who are not able to communicate with the outside world directly. They can easily forecast their emotions or feelings using this technology. In BCI we use oddball paradigms to generate event-related potentials (ERPs), like the P300 wave, on targets which have been selected by the user. The basic principle of a P300 speller is detection of P300 waves that allows the user to write characters. Two classification problems are encountered in the P300 speller. The first is to detect the presence of a P300 in the electroencephalogram (EEG). The second one refers to the combination of different P300 signals for determining the right character to spell. In this thesis both parts i.e., the classification as well as characterization part are presented in a simple and lucid way. First data is obtained using data set 2 of the third BCI competition. The raw data was processed through matlab software and the corresponding feature matrices were obtained. Several techniques such as normalization, feature extraction and feature reduction of the data are explained through the contents of this thesis. Then ANN algorithm is used to classify the data into P300 and no-P300 waves. Finally character recognition is carried out through the use of multiclass classifiers that enable the user to determine the right character to spell

    Improving the Generalisability of Brain Computer Interface Applications via Machine Learning and Search-Based Heuristics

    Get PDF
    Brain Computer Interfaces (BCI) are a domain of hardware/software in which a user can interact with a machine without the need for motor activity, communicating instead via signals generated by the nervous system. These interfaces provide life-altering benefits to users, and refinement will both allow their application to a much wider variety of disabilities, and increase their practicality. The primary method of acquiring these signals is Electroencephalography (EEG). This technique is susceptible to a variety of different sources of noise, which compounds the inherent problems in BCI training data: large dimensionality, low numbers of samples, and non-stationarity between users and recording sessions. Feature Selection and Transfer Learning have been used to overcome these problems, but they fail to account for several characteristics of BCI. This thesis extends both of these approaches by the use of Search-based algorithms. Feature Selection techniques, known as Wrappers use ‘black box’ evaluation of feature subsets, leading to higher classification accuracies than ranking methods known as Filters. However, Wrappers are more computationally expensive, and are prone to over-fitting to training data. In this thesis, we applied Iterated Local Search (ILS) to the BCI field for the first time in literature, and demonstrated competitive results with state-of-the-art methods such as Least Absolute Shrinkage and Selection Operator and Genetic Algorithms. We then developed ILS variants with guided perturbation operators. Linkage was used to develop a multivariate metric, Intrasolution Linkage. This takes into account pair-wise dependencies of features with the label, in the context of the solution. Intrasolution Linkage was then integrated into two ILS variants. The Intrasolution Linkage Score was discovered to have a stronger correlation with the solutions predictive accuracy on unseen data than Cross Validation Error (CVE) on the training set, the typical approach to feature subset evaluation. Mutual Information was used to create Minimum Redundancy Maximum Relevance Iterated Local Search (MRMR-ILS). In this algorithm, the perturbation operator was guided using an existing Mutual Information measure, and compared with current Filter and Wrapper methods. It was found to achieve generally lower CVE rates and higher predictive accuracy on unseen data than existing algorithms. It was also noted that solutions found by the MRMR-ILS provided CVE rates that had a stronger correlation with the accuracy on unseen data than solutions found by other algorithms. We suggest that this may be due to the guided perturbation leading to solutions that are richer in Mutual Information. Feature Selection reduces computational demands and can increase the accuracy of our desired models, as evidenced in this thesis. However, limited quantities of training samples restricts these models, and greatly reduces their generalisability. For this reason, utilisation of data from a wide range of users is an ideal solution. Due to the differences in neural structures between users, creating adequate models is difficult. We adopted an existing state-of-the-art ensemble technique Ensemble Learning Generic Information (ELGI), and developed an initial optimisation phase. This involved using search to transplant instances between user subsets to increase the generalisability of each subset, before combination in the ELGI. We termed this Evolved Ensemble Learning Generic Information (eELGI). The eELGI achieved higher accuracy than user-specific BCI models, across all eight users. Optimisation of the training dataset allowed smaller training sets to be used, offered protection against neural drift, and created models that performed similarly across participants, regardless of neural impairment. Through the introduction and hybridisation of search based algorithms to several problems in BCI we have been able to show improvements in modelling accuracy and efficiency. Ultimately, this represents a step towards more practical BCI systems that will provide life altering benefits to users
    corecore