620 research outputs found

    Grid resource discovery based on web services

    Get PDF
    The size of grid systems has increased substantially in the last decades. Resource discovery in grid systems is a fundamental task which provides searching and locating necessary resources for a given process. Various different approaches are proposed in literature for this problem. Grid resource discovery using web services is an important approach which has resulted in many tools to become de facto standards of today's grid resource management. In this paper, we propose a survey of recent grid resource discovery studies based on web services. We provide synthesis, analysis and evaluation of these studies by classification. We also give a comparative study of different classes proposed

    DECENTRALIZED RESOURCE ORCHESTRATION FOR HETEROGENEOUS GRIDS

    Get PDF
    Modern desktop machines now use multi-core CPUs to enable improved performance. However, achieving high performance on multi-core machines without optimized software support is still difficult even in a single machine, because contention for shared resources can make it hard to exploit multiple computing resources efficiently. Moreover, more diverse and heterogeneous hardware platforms (e.g. general-purpose GPU and Cell processors) have emerged and begun to impact grid computing. Given that heterogeneity and diversity are now a major trend going forward, grid computing must support these environmental changes. In this dissertation, I design and evaluate a decentralized resource management scheme to exploit heterogeneous multiple computing resources effectively. I suggest resource management algorithms that can efficiently utilize a diverse computational environment, including multiple symmetric computing entities and heterogeneous multi-computing entities, and achieve good load-balancing and high total system throughput. Moreover, I propose expressive resource description techniques to accommodate more heterogeneous environments, allowing incoming jobs with complex requirements to be matched to available resources. First, I develop decentralized resource management frameworks and job scheduling schemes to exploit multi-core nodes in peer-to-peer grids. I present two new load-balancing schemes that explicitly account for resource sharing and contention across multiple cores within a single machine, and propose a simple performance prediction model that can represent a continuum of resource sharing among cores of a CPU. Second, I provide scalable resource discovery and load balancing techniques to accommodate nodes with many types of computing elements, such as multi-core CPUs and GPUs, in a peer-to-peer grid architecture. My scheme takes into account diverse aspects of heterogeneous nodes to maximize overall system throughput as well as minimize messaging costs without sacrificing the failure resilience provided by an underlying peer-to-peer overlay network. Finally, I propose an expressive resource discovery method to support multi-attribute, range-based job constraints. The common approach of using simple attribute indexes does not suffice, as range-based constraints may be satisfied by more than a single value. I design a compact ID-based representation for resource characteristics, and integrate this representation into the decentralized resource discovery framework. By extensive experimental results via simulation, I show that my schemes can match heterogeneous jobs to heterogeneous resources both effectively (good matches are found, load is balanced), and efficiently (the new functionality imposes little overhead)

    Resource Management in a Peer to Peer Cloud Network for IoT

    Get PDF
    Software-Defined Internet of Things (SDIoT) is defined as merging heterogeneous objects in a form of interaction among physical and virtual entities. Large scale of data centers, heterogeneity issues and their interconnections have made the resource management a hard problem specially when there are different actors in cloud system with different needs. Resource management is a vital requirement to achieve robust networks specially with facing continuously increasing amount of heterogeneous resources and devices to the network. The goal of this paper is reviews to address IoT resource management issues in cloud computing services. We discuss the bottlenecks of cloud networks for IoT services such as mobility. We review Fog computing in IoT services to solve some of these issues. It provides a comprehensive literature review of around one hundred studies on resource management in Peer to Peer Cloud Networks and IoT. It is very important to find a robust design to efficiently manage and provision requests and available resources. We also reviewed different search methodologies to help clients find proper resources to answer their needs

    A Practical Study of Self-Stabilization for Prefix-Tree Based Overlay Networks

    Get PDF
    Service discovery is crucial in the development of fully decentralized computational grids. Among the significant amount of work produced by the convergence of peer-to-peer (P2P) systems and grids, a new kind of overlay networks, based on prefix trees, has emerged. In particular, the Distributed Lexicographic Placement Table (DLPT) approach is a decentralized and dynamic service discovery service. Fault-tolerance within the DLPT approach is achieved through best-effort policies relying on formal self-stabilization results. Self-stabilization means that the tree can become transiently inconsistent, but is guaranteed to autonomously converge to a correct topology after arbitrary crashes, in a finite time. However, during convergence, the tree may not be able to process queries correctly. In this paper, we present some simulation results having several objectives. First, we investigate the interest of self-stabilization for such architectures. Second, we explore, still based on simulation, a simple Time-To-Live policy to avoid useless processing during convergence time

    Efficiency of Tree-Structured Peer-to-Peer Service Discovery Systems

    Get PDF
    The efficiency of service discovery is a crucial point in the development of fully decentralized middlewares intended to manage large scale computational grids. The work conducted on this issue led to the design of many peer-to-peer fashioned approaches. More specifically, the need for flexibility and complexity in the service discovery has seen the emergence of a new kind of overlays, based on tries, also known as lexicographic trees. Although these overlays are efficient and well designed, they require a costly maintenance and do not accurately take into account the heterogeneity of nodes and the changing popularity of the services requested by users. In this paper, we focus on reducing the cost of the maintenance of a particular architecture, based on a dynamic prefix tree, while enhancing it with some load balancing techniques that dynamically adapt the load of the nodes in order to maximize the throughput of the system. The algorithms developed couple a self-organizing prefix tree overlay with load balancing techniques inspired by similar previous works undertaken for distributed hash tables. After some simulation results showing how our load balancing heuristics perform in such an overlay and compare to other heuristics, we provide a fair comparison of this architecture and similar overlays recently proposed.L’efficacité de la découverte de services est un point crucial du développement d’intergiciels de grille totalement décentralisés. Les travaux ayant pour but la résolution de ce problème ont généré un certain nombre d’approches pair-à-pair. le besoin de flexibilité et d’expressivité a donné lieu au développement d’architecture s’appuyant sur des arbres de préfixes(ou arbres lexicographiques). Ces overlays souffrent d’une maintenance couteuse et ne prennent pas en compte la nature hétérogène de la plate-forme physique sous-jacente et la popularité différente et changeante de chaque ressource enregistrée.Dans ce rapport, nous nous focalisons sur la réduction du cout de maintenance d’une telle architecture, basée sur un arbre de préfixes dynamique,tout en lui donnant la possibilité de s’adapter à l’hétérogénéité précitée par l’enrichissant de mécanismes de répartition de la charge qui adaptent dynamiquement la charge des nœuds dans le but de maximiser le débit sur service. Notre approche couple des travaux de répartition de la charge dans les DHTs avec un overlay en arbre de préfixes auto-organisant. Après des résultats de simulation mettant en évidence l’efficacité de notre heuristique, nous comparons notre approche avec les travaux s’appuyant sur des structures distribuées similaires

    Semantic-Based, Scalable, Decentralized and Dynamic Resource Discovery for Internet-Based Distributed System

    Get PDF
    Resource Discovery (RD) is a key issue in Internet-based distributed sytems such as grid. RD is about locating an appropriate resource/service type that matches the user's application requirements. This is very important, as resource reservation and task scheduling are based on it. Unfortunately, RD in grid is very challenging as resources and users are distributed, resources are heterogeneous in their platforms, status of the resources is dynamic (resources can join or leave the system without any prior notice) and most recently the introduction of a new type of grid called intergrid (grid of grids) with the use of multi middlewares. Such situation requires an RD system that has rich interoperability, scalability, decentralization and dynamism features. However, existing grid RD systems have difficulties to attain these features. Not only that, they lack the review and evaluation studies, which may highlight the gap in achieving the required features. Therefore, this work discusses the problem associated with intergrid RD from two perspectives. First, reviewing and classifying the current grid RD systems in such a way that may be useful for discussing and comparing them. Second, propose a novel RD framework that has the aforementioned required RD features. In the former, we mainly focus on the studies that aim to achieve interoperability in the first place, which are known as RD systems that use semantic information (semantic technology). In particular, we classify such systems based on their qualitative use of the semantic information. We evaluate the classified studies based on their degree of accomplishment of interoperability and the other RD requirements, and draw the future research direction of this field. Meanwhile in the latter, we name the new framework as semantic-based scalable decentralized dynamic RD. The framework further contains two main components which are service description, and service registration and discovery models. The earlier consists of a set of ontologies and services. Ontologies are used as a data model for service description, whereas the services are to accomplish the description process. The service registration is also based on ontology, where nodes of the service (service providers) are classified to some classes according to the ontology concepts, which means each class represents a concept in the ontology. Each class has a head, which is elected among its own class I nodes/members. Head plays the role of a registry in its class and communicates with I the other heads of the classes in a peer to peer manner during the discovery process. We further introduce two intelligent agents to automate the discovery process which are Request Agent (RA) and Description Agent (DA). Eaclj. node is supposed to have both agents. DA describes the service capabilities based on the ontology, and RA I carries the service requests based on the ontology as well. We design a service search I algorithm for the RA that starts the service look up from the class of request origin first, then to the other classes. We finally evaluate the performance of our framework ~ith extensive simulation experiments, the result of which confirms the effectiveness of the proposed system in satisfying the required RD features (interoperability, scalability, decentralization and dynamism). In short, our main contributions are outlined new key taxonomy for the semantic-based grid RD studies; an interoperable semantic description RD component model for intergrid services metadata representation; a semantic distributed registry architecture for indexing service metadata; and an agent-qased service search and selection algorithm. Vll

    Resource discovery for distributed computing systems: A comprehensive survey

    Get PDF
    Large-scale distributed computing environments provide a vast amount of heterogeneous computing resources from different sources for resource sharing and distributed computing. Discovering appropriate resources in such environments is a challenge which involves several different subjects. In this paper, we provide an investigation on the current state of resource discovery protocols, mechanisms, and platforms for large-scale distributed environments, focusing on the design aspects. We classify all related aspects, general steps, and requirements to construct a novel resource discovery solution in three categories consisting of structures, methods, and issues. Accordingly, we review the literature, analyzing various aspects for each category
    corecore