1,031 research outputs found

    Airborne Network Data Availability Using Peer to Peer Database Replication on a Distributed Hash Table

    Get PDF
    The concept of distributing one complex task to several smaller, simpler Unmanned Aerial Vehicles (UAVs) as opposed to one complex UAV is the way of the future for a vast number of surveillance and data collection tasks. One objective for this type of application is to be able to maintain an operational picture of the overall environment. Due to high bandwidth costs, centralizing all data may not be possible, necessitating a distributed storage system such as mobile Distributed Hash Table (DHT). A difficulty with this maintenance is that for an Airborne Network (AN), nodes are vehicles and travel at high rates of speed. Since the nodes travel at high speeds they may be out of contact with other nodes and their data becomes unavailable. To address this the DHT must include a data replication strategy to ensure data availability. This research investigates the percentage of data available throughout the network by balancing data replication and network bandwidth. The DHT used is Pastry with data replication using Beehive, running over an 802.11 wireless environment, simulated in Network Simulator 3. Results show that high levels of replication perform well until nodes are too tightly packed inside a given area which results in too much contention for limited bandwidth

    Mobile object location discovery in unpredictable environments

    Get PDF
    Emerging mobile and ubiquitous computing environments present hard challenges to software engineering. The use of mobile code has been suggested as a natural fit for simplifing software development for these environments. However, the task of discovering mobile code location becomes a problem in unpredictable environments when using existing strategies, designed with fixed and relatively stable networks in mind. This paper introduces AMOS, a mobile code platform augmented with a structured overlay network. We demonstrate how the location discovery strategy of AMOS has better reliability and scalability properties than existing approaches, with minimal communication overhead. Finally, we demonstrate how AMOS can provide autonomous distribution of effort fairly throughout a network using probabilistic methods that requires no global knowledge of host capabilities

    A one hop overlay system for Mobile Ad Hoc Networks

    Get PDF
    Peer-to-Peer (P2P) overlays were initially proposed for use with wired networks. However, the very rapid proliferation of wireless communication technology has prompted a need for adoption of P2P systems in mobile networks too. There are many common characteristics between P2P overlay networks and Mobile Ad-hoc Networks (MANET). Self-organization, decentralization, a dynamic nature and changing topology are the most commonly shared features. Furthermore, when used together, the two approaches complement each other. P2P overlays provide data storage/retrieval functionality and MANET provides wireless connectivity between clients without depending on any pre-existing infrastructure. P2P overlay networks can be deployed over MANET to address content discovery issues. However, previous research has shown that deploying P2P systems straight over MANET does not exhibit satisfactory performance. Bandwidth limitation, limited resources and node mobility are some of the key constraints. This thesis proposes a novel approach, OneHopOverlay4MANET, to exploit the synergies between MANET and P2P overlays through cross-layering. It combines Distributed Hash Table (DHT) based structured P2P overlays with MANET underlay routing protocols to achieve one logical hop between any pair of overlay nodes. OneHopOverlay4MANET constructs a cross-layer channel to permit direct exchange of routing information between the Application layer, where the overlay operates, and the MANET underlay layer. Consequently, underlay routing information can be shared and used by the overlay. Thus, OneHopOverlay4MANET reduces the typical management traffic when deploying traditional P2P systems over MANET. Moreover, as a result of building one hop overlay, OneHopOverlay4MANET can eliminate the mismatching issue between overlay and underlay and hence resolve key lookups in a short time, enhancing the performance of the overlay. v In this thesis, we present OneHopOverlay4MANET and evaluate its performance when combined with different underlay routing protocols. OneHopOverlay4MANET has been combined with two proactive underlays (OLSR and BATMAN) and with three reactive underlay routing protocols (DSR, AODV and DYMO). In addition, the performance of the proposed system over OLSR has been compared to two recent structured P2P over MANET systems (MA-SP2P and E-SP2P) that adopted OLSR as the routing protocol. The results show that better performance can be achieved using OneHopOverlay4MANET

    Priority Based Routing for Mobile Peer-To-Peer Communications

    Get PDF
    In a Mobile Peer-to-Peer (MP2P) network, mobile nodes share their resources among one another in a mobile wireless environment. Communication among nodes in MP2P network has become an important area for research due to the significance of its applications. The success of these MP2P applications depends on the number of users in the network, popularity of services offered, quick response and faster access to services. Some services offered could be more popular than others and some peers may contribute more to the network by catering to more requests compared to other peers. In priority based routing mechanism, there is an increase in the priority of a peer with the increase in the number of times it provides services to other peers. The priority of a shared service also increases as the number of requests for that service increases. Also, the mechanism of priority based mobile peer-to-peer routing provides higher priority for traffic destined to high contributing peers and the traffic of popular services, during routing. This would provide high contributing peers quicker response and faster access to services. Hence, this mechanism motivates more users to join the MP2P network and contribute more to the network

    Effects of Data Replication on Data Exfiltration in Mobile Ad hoc Networks Utilizing Reactive Protocols

    Get PDF
    A swarm of autonomous UAVs can provide a significant amount of ISR data where current UAV assets may not be feasible or practical. As such, the availability of the data the resides in the swarm is a topic that will benefit from further investigation. This thesis examines the impact of le replication and swarm characteristics such as node mobility, swarm size, and churn rate on data availability utilizing reactive protocols. This document examines the most prominent factors affecting the networking of nodes in a MANET. Factors include network routing protocols and peer-to-peer le protocols. It compares and contrasts several open source network simulator environments. Experiment implementation is documented, covering design considerations, assumptions, and software implementation, as well as detailing constant, response and variable factors. Collected data is presented and the results show that in swarms of sizes of 30, 45, and 60 nodes, le replication improves data availability until network saturation is reached, with the most significant benefit gained after only one copy is made. Mobility, churn rate, and swarm density all influence the replication impact

    Cross-layer Peer-to-Peer Computing in Mobile Ad Hoc Networks

    Get PDF
    The future information society is expected to rely heavily on wireless technology. Mobile access to the Internet is steadily gaining ground, and could easily end up exceeding the number of connections from the fixed infrastructure. Picking just one example, ad hoc networking is a new paradigm of wireless communication for mobile devices. Initially, ad hoc networking targeted at military applications as well as stretching the access to the Internet beyond one wireless hop. As a matter of fact, it is now expected to be employed in a variety of civilian applications. For this reason, the issue of how to make these systems working efficiently keeps the ad hoc research community active on topics ranging from wireless technologies to networking and application systems. In contrast to traditional wire-line and wireless networks, ad hoc networks are expected to operate in an environment in which some or all the nodes are mobile, and might suddenly disappear from, or show up in, the network. The lack of any centralized point, leads to the necessity of distributing application services and responsibilities to all available nodes in the network, making the task of developing and deploying application a hard task, and highlighting the necessity of suitable middleware platforms. This thesis studies the properties and performance of peer-to-peer overlay management algorithms, employing them as communication layers in data sharing oriented middleware platforms. The work primarily develops from the observation that efficient overlays have to be aware of the physical network topology, in order to reduce (or avoid) negative impacts of application layer traffic on the network functioning. We argue that cross-layer cooperation between overlay management algorithms and the underlying layer-3 status and protocols, represents a viable alternative to engineer effective decentralized communication layers, or eventually re-engineer existing ones to foster the interconnection of ad hoc networks with Internet infrastructures. The presented approach is twofold. Firstly, we present an innovative network stack component that supports, at an OS level, the realization of cross-layer protocol interactions. Secondly, we exploit cross-layering to optimize overlay management algorithms in unstructured, structured, and publish/subscribe platforms

    Opportunistic P2P Communications in Delay-Tolerant Rural Scenarios

    Get PDF
    Opportunistic networking represents a promising paradigm for support of communications, specifically in infrastructureless scenarios such as remote areas communications. In principle in opportunistic environments, we would like to make available all the applications thought for traditional wired and wireless networks like file-sharing and content distribution. In this paper, we present a delay-tolerant scenario for file sharing applications in rural areas, where an opportunistic approach is exploited. In order to support communications, we compare two peer-to-peer (P2P) schemes initially conceived for wireless networks and prove their applicability and usefulness to a DTN scenario, where replication of resources can be used to improve the lookup performance and the network can be occasionally connected by means of a data mule. Simulation results show the suitability of the schemes and allow to derive interesting design guidelines on the convenience and applicability of such approaches

    Efficient service discovery in wide area networks

    Get PDF
    Living in an increasingly networked world, with an abundant number of services available to consumers, the consumer electronics market is enjoying a boom. The average consumer in the developed world may own several networked devices such as games consoles, mobile phones, PDAs, laptops and desktops, wireless picture frames and printers to name but a few. With this growing number of networked devices comes a growing demand for services, defined here as functions requested by a client and provided by a networked node. For example, a client may wish to download and share music or pictures, find and use printer services, or lookup information (e.g. train times, cinema bookings). It is notable that a significant proportion of networked devices are now mobile. Mobile devices introduce a new dynamic to the service discovery problem, such as lower battery and processing power and more expensive bandwidth. Device owners expect to access services not only in their immediate proximity, but further afield (e.g. in their homes and offices). Solving these problems is the focus of this research. This Thesis offers two alternative approaches to service discovery in Wide Area Networks (WANs). Firstly, a unique combination of the Session Initiation Protocol (SIP) and the OSGi middleware technology is presented to provide both mobility and service discovery capability in WANs. Through experimentation, this technique is shown to be successful where the number of operating domains is small, but it does not scale well. To address the issue of scalability, this Thesis proposes the use of Peer-to-Peer (P2P) service overlays as a medium for service discovery in WANs. To confirm that P2P overlays can in fact support service discovery, a technique to utilise the Distributed Hash Table (DHT) functionality of distributed systems is used to store and retrieve service advertisements. Through simulation, this is shown to be both a scalable and a flexible service discovery technique. However, the problems associated with P2P networks with respect to efficiency are well documented. In a novel approach to reduce messaging costs in P2P networks, multi-destination multicast is used. Two well known P2P overlays are extended using the Explicit Multi-Unicast (XCAST) protocol. The resulting analysis of this extension provides a strong argument for multiple P2P maintenance algorithms co-existing in a single P2P overlay to provide adaptable performance. A novel multi-tier P2P overlay system is presented, which is tailored for service rich mobile devices and which provides an efficient platform for service discovery
    • …
    corecore