2,110 research outputs found

    Creating a mobile P2P file sharing environment over Bluetooth

    Get PDF

    Enabling Social Applications via Decentralized Social Data Management

    Full text link
    An unprecedented information wealth produced by online social networks, further augmented by location/collocation data, is currently fragmented across different proprietary services. Combined, it can accurately represent the social world and enable novel socially-aware applications. We present Prometheus, a socially-aware peer-to-peer service that collects social information from multiple sources into a multigraph managed in a decentralized fashion on user-contributed nodes, and exposes it through an interface implementing non-trivial social inferences while complying with user-defined access policies. Simulations and experiments on PlanetLab with emulated application workloads show the system exhibits good end-to-end response time, low communication overhead and resilience to malicious attacks.Comment: 27 pages, single ACM column, 9 figures, accepted in Special Issue of Foundations of Social Computing, ACM Transactions on Internet Technolog

    Mobile Computing in Digital Ecosystems: Design Issues and Challenges

    Full text link
    In this paper we argue that the set of wireless, mobile devices (e.g., portable telephones, tablet PCs, GPS navigators, media players) commonly used by human users enables the construction of what we term a digital ecosystem, i.e., an ecosystem constructed out of so-called digital organisms (see below), that can foster the development of novel distributed services. In this context, a human user equipped with his/her own mobile devices, can be though of as a digital organism (DO), a subsystem characterized by a set of peculiar features and resources it can offer to the rest of the ecosystem for use from its peer DOs. The internal organization of the DO must address issues of management of its own resources, including power consumption. Inside the DO and among DOs, peer-to-peer interaction mechanisms can be conveniently deployed to favor resource sharing and data dissemination. Throughout this paper, we show that most of the solutions and technologies needed to construct a digital ecosystem are already available. What is still missing is a framework (i.e., mechanisms, protocols, services) that can support effectively the integration and cooperation of these technologies. In addition, in the following we show that that framework can be implemented as a middleware subsystem that enables novel and ubiquitous forms of computation and communication. Finally, in order to illustrate the effectiveness of our approach, we introduce some experimental results we have obtained from preliminary implementations of (parts of) that subsystem.Comment: Proceedings of the 7th International wireless Communications and Mobile Computing conference (IWCMC-2011), Emergency Management: Communication and Computing Platforms Worksho

    The fans united will always be connected: building a practical DTN in a football stadium

    Get PDF
    Football stadia present a difficult environment for the deployment of digital services, due to their architectural design and the capacity problems from the numbers of fans. We present preliminary results from deploying an Android app building an ad hoc network amongst the attendees at matches at Brighton and Hove Albion's AMEX stadium, so as to share the available capacity and supply digital services to season ticket holders. We describe the protocol, how we engaged our users in service design so that the app was attractive to use and the problems we encountered in using Android

    A Coordination Model and Framework for Developing Distributed Mobile Applications

    Get PDF
    How to coordinate multiple devices to work together as a single application is one of the most important challenges for building a distributed mobile application. Mobile devices play important roles in daily life and resolving this challenge is vital. Many coordination models have already been developed to support the implementation of parallel applications, and LIME (Linda In a Mobile Environment) is the most popular member. This thesis evaluates and analyzes the advantages and disadvantages of the LIME, and its predecessor Linda coordination model. This thesis proposes a new coordination model that focuses on overcoming the drawbacks of LIME and Linda. The new coordination model leverages the features of consistent hashing in order to obtain better coordination performance. Additionally, this new coordination model utilizes the idea of replica mechanism to guarantee data integrity. A cross-platform coordination framework, based on the new coordination model, is presented by this thesis in order to facilitate and simplify the development of distributed mobile applications. This framework aims to be robust and high-performance, supporting not only powerful devices such as smartphones but also constrained devices, which includes IoT sensors. The framework utilizes many advanced concepts and technologies such as CoAP protocol, P2P networking, Wi-Fi Direct, and Bluetooth Low Energy to achieve the goals of high-performance and fault-tolerance. Six experiments have been done to test the coordination model and framework from di erent aspects including bandwidth, throughput, packages per second, hit rate, and data distribution. Results of the experiments demonstrate that the proposed coordination model and framework meet the requirements of high-performance and fault-tolerance
    • …
    corecore