84 research outputs found

    Beyond Language Equivalence on Visibly Pushdown Automata

    Full text link
    We study (bi)simulation-like preorder/equivalence checking on the class of visibly pushdown automata and its natural subclasses visibly BPA (Basic Process Algebra) and visibly one-counter automata. We describe generic methods for proving complexity upper and lower bounds for a number of studied preorders and equivalences like simulation, completed simulation, ready simulation, 2-nested simulation preorders/equivalences and bisimulation equivalence. Our main results are that all the mentioned equivalences and preorders are EXPTIME-complete on visibly pushdown automata, PSPACE-complete on visibly one-counter automata and P-complete on visibly BPA. Our PSPACE lower bound for visibly one-counter automata improves also the previously known DP-hardness results for ordinary one-counter automata and one-counter nets. Finally, we study regularity checking problems for visibly pushdown automata and show that they can be decided in polynomial time.Comment: Final version of paper, accepted by LMC

    Visibly Linear Dynamic Logic

    Get PDF
    We introduce Visibly Linear Dynamic Logic (VLDL), which extends Linear Temporal Logic (LTL) by temporal operators that are guarded by visibly pushdown languages over finite words. In VLDL one can, e.g., express that a function resets a variable to its original value after its execution, even in the presence of an unbounded number of intermediate recursive calls. We prove that VLDL describes exactly the ω\omega-visibly pushdown languages. Thus it is strictly more expressive than LTL and able to express recursive properties of programs with unbounded call stacks. The main technical contribution of this work is a translation of VLDL into ω\omega-visibly pushdown automata of exponential size via one-way alternating jumping automata. This translation yields exponential-time algorithms for satisfiability, validity, and model checking. We also show that visibly pushdown games with VLDL winning conditions are solvable in triply-exponential time. We prove all these problems to be complete for their respective complexity classes.Comment: 25 Page

    Two-Way Visibly Pushdown Automata and Transducers

    Full text link
    Automata-logic connections are pillars of the theory of regular languages. Such connections are harder to obtain for transducers, but important results have been obtained recently for word-to-word transformations, showing that the three following models are equivalent: deterministic two-way transducers, monadic second-order (MSO) transducers, and deterministic one-way automata equipped with a finite number of registers. Nested words are words with a nesting structure, allowing to model unranked trees as their depth-first-search linearisations. In this paper, we consider transformations from nested words to words, allowing in particular to produce unranked trees if output words have a nesting structure. The model of visibly pushdown transducers allows to describe such transformations, and we propose a simple deterministic extension of this model with two-way moves that has the following properties: i) it is a simple computational model, that naturally has a good evaluation complexity; ii) it is expressive: it subsumes nested word-to-word MSO transducers, and the exact expressiveness of MSO transducers is recovered using a simple syntactic restriction; iii) it has good algorithmic/closure properties: the model is closed under composition with a unambiguous one-way letter-to-letter transducer which gives closure under regular look-around, and has a decidable equivalence problem

    Event-Clock Nested Automata

    Full text link
    In this paper we introduce and study Event-Clock Nested Automata (ECNA), a formalism that combines Event Clock Automata (ECA) and Visibly Pushdown Automata (VPA). ECNA allow to express real-time properties over non-regular patterns of recursive programs. We prove that ECNA retain the same closure and decidability properties of ECA and VPA being closed under Boolean operations and having a decidable language-inclusion problem. In particular, we prove that emptiness, universality, and language-inclusion for ECNA are EXPTIME-complete problems. As for the expressiveness, we have that ECNA properly extend any previous attempt in the literature of combining ECA and VPA

    Visibly Pushdown Automata: From Language Equivalence to Simulation and Bisimulation

    Full text link

    Edit Distance for Pushdown Automata

    Get PDF
    The edit distance between two words w1,w2w_1, w_2 is the minimal number of word operations (letter insertions, deletions, and substitutions) necessary to transform w1w_1 to w2w_2. The edit distance generalizes to languages L1,L2\mathcal{L}_1, \mathcal{L}_2, where the edit distance from L1\mathcal{L}_1 to L2\mathcal{L}_2 is the minimal number kk such that for every word from L1\mathcal{L}_1 there exists a word in L2\mathcal{L}_2 with edit distance at most kk. We study the edit distance computation problem between pushdown automata and their subclasses. The problem of computing edit distance to a pushdown automaton is undecidable, and in practice, the interesting question is to compute the edit distance from a pushdown automaton (the implementation, a standard model for programs with recursion) to a regular language (the specification). In this work, we present a complete picture of decidability and complexity for the following problems: (1)~deciding whether, for a given threshold kk, the edit distance from a pushdown automaton to a finite automaton is at most kk, and (2)~deciding whether the edit distance from a pushdown automaton to a finite automaton is finite.Comment: An extended version of a paper accepted to ICALP 2015 with the same title. The paper has been accepted to the LMCS journa

    Rigid Tree Automata and Applications

    Get PDF
    International audienceWe introduce the class of Rigid Tree Automata (RTA), an extension of standard bottom-up automata on ranked trees with distinguished states called rigid. Rigid states define a restriction on the computation of RTA on trees: RTA can test for equality in subtrees reaching the same rigid state. RTA are able to perform local and global tests of equality between subtrees, non-linear tree pattern matching, and some inequality and disequality tests as well. Properties like determinism, pumping lemma, Boolean closure, and several decision problems are studied in detail. In particular, the emptiness problem is shown decidable in linear time for RTA whereas membership of a given tree to the language of a given RTA is NP-complete. Our main result is the decidability of whether a given tree belongs to the rewrite closure of an RTA language under a restricted family of term rewriting systems, whereas this closure is not an RTA language. This result, one of the first on rewrite closure of languages of tree automata with constraints, is enabling the extension of model checking procedures based on finite tree automata techniques, in particular for the verification of communicating processes with several local non rewritable memories, like security protocols. Finally, a comparison of RTA with several classes of tree automata with local and global equality tests, with dag automata and Horn clause formalisms is also provided

    A Perfect Model for Bounded Verification

    Full text link
    A class of languages C is perfect if it is closed under Boolean operations and the emptiness problem is decidable. Perfect language classes are the basis for the automata-theoretic approach to model checking: a system is correct if the language generated by the system is disjoint from the language of bad traces. Regular languages are perfect, but because the disjointness problem for CFLs is undecidable, no class containing the CFLs can be perfect. In practice, verification problems for language classes that are not perfect are often under-approximated by checking if the property holds for all behaviors of the system belonging to a fixed subset. A general way to specify a subset of behaviors is by using bounded languages (languages of the form w1* ... wk* for fixed words w1,...,wk). A class of languages C is perfect modulo bounded languages if it is closed under Boolean operations relative to every bounded language, and if the emptiness problem is decidable relative to every bounded language. We consider finding perfect classes of languages modulo bounded languages. We show that the class of languages accepted by multi-head pushdown automata are perfect modulo bounded languages, and characterize the complexities of decision problems. We also show that bounded languages form a maximal class for which perfection is obtained. We show that computations of several known models of systems, such as recursive multi-threaded programs, recursive counter machines, and communicating finite-state machines can be encoded as multi-head pushdown automata, giving uniform and optimal underapproximation algorithms modulo bounded languages.Comment: 14 pages, 6 figure

    Synchronizing automata over nested words

    Get PDF
    We extend the concept of a synchronizing word from deterministic finite-state automata (DFA) to nested word automata (NWA): A well-matched nested word is called synchronizing if it resets the control state of any configuration, i. e., takes the NWA from all control states to a single control state. We show that although the shortest synchronizing word for an NWA, if it exists, can be (at most) exponential in the size of the NWA, the existence of such a word can still be decided in polynomial time. As our main contribution, we show that deciding the existence of a short synchronizing word (of at most given length) becomes PSPACE-complete (as opposed to NP-complete for DFA). The upper bound makes a connection to pebble games and Strahler numbers, and the lower bound goes via small-cost synchronizing words for DFA, an intermediate problem that we also show PSPACE-complete. We also characterize the complexity of a number of related problems, using the observation that the intersection nonemptiness problem for NWA is EXP-complete
    • …
    corecore