1,238 research outputs found

    Recent Advances in the Noninvasive Study of Atrial Conduction Defects Preceding Atrial Fibrillation

    Get PDF
    The P-wave represents the electrical activity in the electrocardiogram (ECG) associated with the heart\u27s atrial contraction. This wave has merited significant research efforts in recent years with the aim to characterize atrial depolarization from the ECG. Indeed, the alterations of the P-wave main time, frequency, and wavelet features have been widely studied to predict the onset of atrial fibrillation (AF), both spontaneously and after a specific treatment, such as pharmacological or electrical cardioversion, catheter ablation, as well as cardiac surgery. To this respect, the P-wave prolongation is today a clinically accepted marker of high risk of suffering AF. However, given the relatively low P-wave amplitude in the ECG, its analysis has been most widely carried out from signal-averaged ECG signals. Unfortunately, these kind of recordings are uncommon in routine clinical practice and, moreover, they obstruct the possibility of studying the information carried by each single P-wave as well as its variability over time. These limitations have motivated the recent development of the beat-to-beat P-wave analysis, which has proven to be very useful in revealing interesting information about the altered atrial conduction preceding the onset of AF. Within this context, the main goal of this chapter is to review the most recent advances reached by this kind of analysis in the noninvasive assessment of atrial conduction alterations. Thus, the chapter will introduce and discuss the existing methods of the beat-to-beat P-wave analysis and their application to predict the onset of AF as well as its advantages and disadvantages compared with the signal-averaged P-wave analysis

    Effect of high-pass filtering on ECG signal on the analysis of patients prone to atrial fibrillation

    Get PDF
    The aim of this study was to assess the effect of filtering techniques on the time-domain analysis of the ECG. Multi-lead ECG recordings obtained from chronic atrial fibrillation (AF) patients after successful external cardioversion have been acquired. Several high-pass filtering techniques and three cut-off frequency values were used: Bessel and Butterworth four-pole and two-pole bidirectional and unidirectional filters, at 0.01, 0.05 and 0.5 Hz low cut-off frequency. As a reference, a beat-by-beat linear piecewise interpolation was used to remove baseline wander, on each P-wave. Results show that ECG filtering affects the estimation of P-wave duration in a manner that depends upon the type of filter used: particularly, the bidirectional filters caused negligible variation of P-wave duration, while unidirectional ones provoked an increase higher than 8%

    Advances in Digital Processing of Low-Amplitude Components of Electrocardiosignals

    Get PDF
    This manual has been published within the framework of the BME-ENA project under the responsibility of National Technical University of Ukraine. The BME-ENA “Biomedical Engineering Education Tempus Initiative in Eastern Neighbouring Area”, Project Number: 543904-TEMPUS-1-2013-1-GR-TEMPUS-JPCR is a Joint Project within the TEMPUS IV program. This project has been funded with support from the European Commission.Навчальний посібник присвячено розробці методів та засобів для неінвазивного виявлення та дослідження тонких проявів електричної активності серця. Особлива увага приділяється вдосконаленню інформаційного та алгоритмічного забезпечення систем електрокардіографії високого розрізнення для ранньої діагностики електричної нестабільності міокарда, а також для оцінки функціонального стану плоду під час вагітності. Теоретичні основи супроводжуються прикладами реалізації алгоритмів за допомогою системи MATLAB. Навчальний посібник призначений для студентів, аспірантів, а також фахівців у галузі біомедичної електроніки та медичних працівників.The teaching book is devoted to development and research of methods and tools for non-invasive detection of subtle manifistations of heart electrical activity. Particular attention is paid to the improvement of information and algorithmic support of high resolution electrocardiography for early diagnosis of myocardial electrical instability, as well as for the evaluation of the functional state of the fetus during pregnancy examination. The theoretical basis accompanied by the examples of implementation of the discussed algorithms with the help of MATLAB. The teaching book is intended for students, graduate students, as well as specialists in the field of biomedical electronics and medical professionals

    Wavelet entropy as a measure of ventricular beat suppression from the electrocardiogram in atrial fibrillation

    Get PDF
    A novel method of quantifying the effectiveness of the suppression of ventricular activity from electrocardiograms (ECGs) in atrial fibrillation is proposed. The temporal distribution of the energy of wavelet coefficients is quantified by wavelet entropy at each ventricular beat. More effective ventricular activity suppression yields increased entropies at scales dominated by the ventricular and atrial components of the ECG. Two studies are undertaken to demonstrate the efficacy of the method: first, using synthesised ECGs with controlled levels of residual ventricular activity, and second, using patient recordings with ventricular activity suppressed by an average beat template subtraction algorithm. In both cases wavelet entropy is shown to be a good measure of the effectiveness of ventricular beat suppression

    P-wave Variability and Atrial Fibrillation

    Get PDF
    The analysis of P-wave template has been widely used to extract indices of Atrial Fibrillation (AF) risk stratification. The aim of this paper was to assess the potential of the analysis of the P-wave variability over time in patients suffering from atrial fibrillation. P-wave features extracted from P-wave template together with novel indices of P-wave variability have been estimated in a population of patients suffering from persistent AF and compared to those extracted from control subjects. We quantify the P-wave variability over time using three algorithms and we extracted three novel indices: one based on the cross-correlation coefficients among the P-waves (Cross-Correlation Index, CCI), one associated to variation in amplitude of the P-waves (Amplitude Dispersion Index, ADI), one sensible to the phase shift among P-waves (Warping Index, WI). The control group resulted to be characterized by shorter P-wave duration and by a less amount of fragmentation and variability, respect to AF patients. The parameter CCI shows the highest sensitivity (97.3%) and a good specificity (95%)

    Novel Approaches to ECG-Based Modeling and Characterization of Atrial Fibrillation

    Get PDF
    This thesis deals with signal processing algorithms for analysis of the electrocardiogram (ECG) during atrial fibrillation (AF). Such analysis can be used for diagnosing patients, and for monitoring and predicting their response to various treatment. The thesis comprises an introduction and five papers describing methods for ECG-based modeling and characterization of AF. Paper I--IV deal with methods for characterization of the atrial activity, whereas Paper V deals with modeling of the ventricular response, both problems with the assumption that AF is present. In Paper I, a number of measures characterizing the atrial activity in the ECG, obtained using time-frequency analysis as well as nonlinear methods, are evaluated for their ability to predict spontaneous termination of AF. The AF frequency, i.e, the repetition rate of the atrial fibrillatory waves of the ECG, proved to be a significant factor for discrimination between terminating and non-terminating AF. Noise is a common problem in ECG signals, particularly in long-term ambulatory recordings. Hence, robust algorithms for analysis and characterization are required. In Paper II, a robust method for tracking the AF frequency in noisy signals is presented. The method is based on a hidden Markov model (HMM), which takes the harmonic pattern of the atrial activity into account. Using the HMM-based method, the average RMS error of the frequency estimates at high noise levels was significantly lower compared to existing methods. In Paper III, the HMM-based method is employed for analysis of 24-h ambulatory ECG signals in order to explore circadian variation in AF frequency. Circadian variations reflect autonomic modulation; attenuation or absence of such variations may help to diagnose patients. Methods based on curve fitting, autocorrelation, and joint variation, respectively, are employed to quantify circadian variations, showing that it is present in most patients with long-standing persistent AF, although the short-term variation is considerable. In Paper IV, 24-h ambulatory ECG recordings with paroxysmal and persistent AF are analyzed using an entropy-based method for characterization of the atrial activity. Short segments are classified based on these measures, showing that it is feasible to distinguish between patient with paroxysmal and persistent AF from 10-s ECGs; the average classification rate was above 95%. The ventricular response during AF is mainly determined by the AV nodal blocking of atrial impulses. In Paper V, a new model-based approach for analysis of the ventricular response during AF is proposed. The model integrates physiological properties of the AV node and the atrial fibrillatory rate; the model parameters can be estimated from ECG signals. Results show that ventricular response is sufficiently represented by the estimated model in a majority of the recordings; in 85.7% of the analyzed 30-min segments the model fit was considered accurate, and that changes of AV nodal properties caused by autonomic modulation could be tracked through the estimated model parameters. In summary, the work within this thesis contributes with new methods for non-invasive analysis of AF, which can be used to tailor and evaluate different strategies for AF treatment

    ECG modeling for simulation of arrhythmias in time-varying conditions

    Get PDF
    The present paper proposes an ECG simulator that advances modeling of arrhythmias and noise by introducing time-varying signal characteristics. The simulator is built around a discrete-time Markov chain model for simulating atrial and ventricular arrhythmias of particular relevance when analyzing atrial fibrillation (AF). Each state is associated with statistical information on episode duration and heartbeat characteristics. Statistical, time-varying modeling of muscle noise, motion artifacts, and the influence of respiration is introduced to increase the complexity of simulated ECGs, making the simulator well suited for data augmentation in machine learning. Modeling of how the PQ and QT intervals depend on heart rate is also introduced. The realism of simulated ECGs is assessed by three experienced doctors, showing that simulated ECGs are difficult to distinguish from real ECGs. Simulator usefulness is illustrated in terms of AF detection performance when either simulated or real ECGs are used to train a neural network for signal quality control. The results show that both types of training lead to similar performance

    A bi-atrial statistical shape model for large-scale in silico studies of human atria: model development and application to ECG simulations

    Get PDF
    Large-scale electrophysiological simulations to obtain electrocardiograms (ECG) carry the potential to produce extensive datasets for training of machine learning classifiers to, e.g., discriminate between different cardiac pathologies. The adoption of simulations for these purposes is limited due to a lack of ready-to-use models covering atrial anatomical variability. We built a bi-atrial statistical shape model (SSM) of the endocardial wall based on 47 segmented human CT and MRI datasets using Gaussian process morphable models. Generalization, specificity, and compactness metrics were evaluated. The SSM was applied to simulate atrial ECGs in 100 random volumetric instances. The first eigenmode of our SSM reflects a change of the total volume of both atria, the second the asymmetry between left vs. right atrial volume, the third a change in the prominence of the atrial appendages. The SSM is capable of generalizing well to unseen geometries and 95% of the total shape variance is covered by its first 23 eigenvectors. The P waves in the 12-lead ECG of 100 random instances showed a duration of 104ms in accordance with large cohort studies. The novel bi-atrial SSM itself as well as 100 exemplary instances with rule-based augmentation of atrial wall thickness, fiber orientation, inter-atrial bridges and tags for anatomical structures have been made publicly available. The novel, openly available bi-atrial SSM can in future be employed to generate large sets of realistic atrial geometries as a basis for in silico big data approaches

    Atrial conduction velocity mapping: clinical tools, algorithms and approaches for understanding the arrhythmogenic substrate

    Get PDF
    Characterizing patient-specific atrial conduction properties is important for understanding arrhythmia drivers, for predicting potential arrhythmia pathways, and for personalising treatment approaches. One metric that characterizes the health of the myocardial substrate is atrial conduction velocity, which describes the speed and direction of propagation of the electrical wavefront through the myocardium. Atrial conduction velocity mapping algorithms are under continuous development in research laboratories and in industry. In this review article, we give a broad overview of different categories of currently published methods for calculating CV, and give insight into their different advantages and disadvantages overall. We classify techniques into local, global, and inverse methods, and discuss these techniques with respect to their faithfulness to the biophysics, incorporation of uncertainty quantification, and their ability to take account of the atrial manifold

    Multiscale Cohort Modeling of Atrial Electrophysiology : Risk Stratification for Atrial Fibrillation through Machine Learning on Electrocardiograms

    Get PDF
    Patienten mit Vorhofflimmern sind einem fünffach erhöhten Risiko für einen ischämischen Schlaganfall ausgesetzt. Eine frühzeitige Erkennung und Diagnose der Arrhythmie würde ein rechtzeitiges Eingreifen ermöglichen, um möglicherweise auftretende Begleiterkrankungen zu verhindern. Eine Vergrößerung des linken Vorhofs sowie fibrotisches Vorhofgewebe sind Risikomarker für Vorhofflimmern, da sie die notwendigen Voraussetzungen für die Aufrechterhaltung der chaotischen elektrischen Depolarisation im Vorhof erfüllen. Mithilfe von Techniken des maschinellen Lernens könnten Fibrose und eine Vergrößerung des linken Vorhofs basierend auf P Wellen des 12-Kanal Elektrokardiogramms im Sinusrhythmus automatisiert identifiziert werden. Dies könnte die Basis für eine nicht-invasive Risikostrat- ifizierung neu auftretender Vorhofflimmerepisoden bilden, um anfällige Patienten für ein präventives Screening auszuwählen. Zu diesem Zweck wurde untersucht, ob simulierte Vorhof-Elektrokardiogrammdaten, die dem klinischen Trainingssatz eines maschinellen Lernmodells hinzugefügt wurden, zu einer verbesserten Klassifizierung der oben genannten Krankheiten bei klinischen Daten beitra- gen könnten. Zwei virtuelle Kohorten, die durch anatomische und funktionelle Variabilität gekennzeichnet sind, wurden generiert und dienten als Grundlage für die Simulation großer P Wellen-Datensätze mit genau bestimmbaren Annotationen der zugrunde liegenden Patholo- gie. Auf diese Weise erfüllen die simulierten Daten die notwendigen Voraussetzungen für die Entwicklung eines Algorithmus für maschinelles Lernen, was sie von klinischen Daten unterscheidet, die normalerweise nicht in großer Zahl und in gleichmäßig verteilten Klassen vorliegen und deren Annotationen möglicherweise durch unzureichende Expertenannotierung beeinträchtigt sind. Für die Schätzung des Volumenanteils von linksatrialem fibrotischen Gewebe wurde ein merkmalsbasiertes neuronales Netz entwickelt. Im Vergleich zum Training des Modells mit nur klinischen Daten, führte das Training mit einem hybriden Datensatz zu einer Reduzierung des Fehlers von durchschnittlich 17,5 % fibrotischem Volumen auf 16,5 %, ausgewertet auf einem rein klinischen Testsatz. Ein Long Short-Term Memory Netzwerk, das für die Unterscheidung zwischen gesunden und P Wellen von vergrößerten linken Vorhöfen entwickelt wurde, lieferte eine Genauigkeit von 0,95 wenn es auf einem hybriden Datensatz trainiert wurde, von 0,91 wenn es nur auf klinischen Daten trainiert wurde, die alle mit 100 % Sicherheit annotiert wurden, und von 0,83 wenn es auf einem klinischen Datensatz trainiert wurde, der alle Signale unabhängig von der Sicherheit der Expertenannotation enthielt. In Anbetracht der Ergebnisse dieser Arbeit können Elektrokardiogrammdaten, die aus elektrophysiologischer Modellierung und Simulationen an virtuellen Patientenkohorten resul- tieren und relevante Variabilitätsaspekte abdecken, die mit realen Beobachtungen übereinstim- men, eine wertvolle Datenquelle zur Verbesserung der automatisierten Risikostratifizierung von Vorhofflimmern sein. Auf diese Weise kann den Nachteilen klinischer Datensätze für die Entwicklung von Modellen des maschinellen Lernens entgegengewirkt werden. Dies trägt letztendlich zu einer frühzeitigen Erkennung der Arrhythmie bei, was eine rechtzeitige Auswahl geeigneter Behandlungsstrategien ermöglicht und somit das Schlaganfallrisiko der betroffenen Patienten verringert
    corecore