12,356 research outputs found

    P automata revisited

    Get PDF
    We continue here the investigation of P automata, in their non-extended case, a class of devices which characterize non-universal family of languages. First, a recent conjecture is confirmed: any recursively enumerable language is obtained from a language recognized by a P automaton, to which an initial (arbitrarily large) string is added. Then, we discuss possibilities of extending P automata, following suggestions from string finite automata. For instance, automata with a memory (corresponding to push-down automata) are considered and their power is briefly investigated, as well as some closure properties of the family of languages recognized by P automata. In the context, a brief survey of results about P and dP automata (a distributed version of P automata) is provided, and several further research topics are formulated.Junta de AndalucĂ­a P08-TIC-0420

    Simulation of Two-Way Pushdown Automata Revisited

    Get PDF
    The linear-time simulation of 2-way deterministic pushdown automata (2DPDA) by the Cook and Jones constructions is revisited. Following the semantics-based approach by Jones, an interpreter is given which, when extended with random-access memory, performs a linear-time simulation of 2DPDA. The recursive interpreter works without the dump list of the original constructions, which makes Cook's insight into linear-time simulation of exponential-time automata more intuitive and the complexity argument clearer. The simulation is then extended to 2-way nondeterministic pushdown automata (2NPDA) to provide for a cubic-time recognition of context-free languages. The time required to run the final construction depends on the degree of nondeterminism. The key mechanism that enables the polynomial-time simulations is the sharing of computations by memoization.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455

    Dense-choice Counter Machines revisited

    Full text link
    This paper clarifies the picture about Dense-choice Counter Machines, which have been less studied than (discrete) Counter Machines. We revisit the definition of "Dense Counter Machines" so that it now extends (discrete) Counter Machines, and we provide new undecidability and decidability results. Using the first-order additive mixed theory of reals and integers, we give a logical characterization of the sets of configurations reachable by reversal-bounded Dense-choice Counter Machines

    A Simple n-Dimensional Intrinsically Universal Quantum Cellular Automaton

    Full text link
    We describe a simple n-dimensional quantum cellular automaton (QCA) capable of simulating all others, in that the initial configuration and the forward evolution of any n-dimensional QCA can be encoded within the initial configuration of the intrinsically universal QCA. Several steps of the intrinsically universal QCA then correspond to one step of the simulated QCA. The simulation preserves the topology in the sense that each cell of the simulated QCA is encoded as a group of adjacent cells in the universal QCA.Comment: 13 pages, 7 figures. In Proceedings of the 4th International Conference on Language and Automata Theory and Applications (LATA 2010), Lecture Notes in Computer Science (LNCS). Journal version: arXiv:0907.382

    Prisoner's Dilemma cellular automata revisited: evolution of cooperation under environmental pressure

    Full text link
    We propose an extension of the evolutionary Prisoner's Dilemma cellular automata, introduced by Nowak and May \cite{nm92}, in which the pressure of the environment is taken into account. This is implemented by requiring that individuals need to collect a minimum score UminU_{min}, representing indispensable resources (nutrients, energy, money, etc.) to prosper in this environment. So the agents, instead of evolving just by adopting the behaviour of the most successful neighbour (who got UmsnU^{msn}), also take into account if UmsnU^{msn} is above or below the threshold UminU_{min}. If Umsn<UminU^{msn}<U_{min} an individual has a probability of adopting the opposite behaviour from the one used by its most successful neighbour. This modification allows the evolution of cooperation for payoffs for which defection was the rule (as it happens, for example, when the sucker's payoff is much worse than the punishment for mutual defection). We also analyse a more sophisticated version of this model in which the selective rule is supplemented with a "win-stay, lose-shift" criterion. The cluster structure is analyzed and, for this more complex version we found power-law scaling for a restricted region in the parameter space.Comment: 15 pages, 8 figures; added figures and revised tex
    • …
    corecore