7,799 research outputs found

    The Reachability Problem for Petri Nets is Not Elementary

    Get PDF
    Petri nets, also known as vector addition systems, are a long established model of concurrency with extensive applications in modelling and analysis of hardware, software and database systems, as well as chemical, biological and business processes. The central algorithmic problem for Petri nets is reachability: whether from the given initial configuration there exists a sequence of valid execution steps that reaches the given final configuration. The complexity of the problem has remained unsettled since the 1960s, and it is one of the most prominent open questions in the theory of verification. Decidability was proved by Mayr in his seminal STOC 1981 work, and the currently best published upper bound is non-primitive recursive Ackermannian of Leroux and Schmitz from LICS 2019. We establish a non-elementary lower bound, i.e. that the reachability problem needs a tower of exponentials of time and space. Until this work, the best lower bound has been exponential space, due to Lipton in 1976. The new lower bound is a major breakthrough for several reasons. Firstly, it shows that the reachability problem is much harder than the coverability (i.e., state reachability) problem, which is also ubiquitous but has been known to be complete for exponential space since the late 1970s. Secondly, it implies that a plethora of problems from formal languages, logic, concurrent systems, process calculi and other areas, that are known to admit reductions from the Petri nets reachability problem, are also not elementary. Thirdly, it makes obsolete the currently best lower bounds for the reachability problems for two key extensions of Petri nets: with branching and with a pushdown stack.Comment: Final version of STOC'1

    Translating UML State Machines to Coloured Petri Nets Using Acceleo: A Report

    Full text link
    UML state machines are widely used to specify dynamic systems behaviours. However its semantics is described informally, thus preventing the application of model checking techniques that could guarantee the system safety. In a former work, we proposed a formalisation of non-concurrent UML state machines using coloured Petri nets, so as to allow for formal verification. In this paper, we report our experience to implement this translation in an automated manner using the model-to-text transformation tool Acceleo. Whereas Acceleo provides interesting features that facilitated our translation process, it also suffers from limitations uneasy to overcome.Comment: In Proceedings ESSS 2014, arXiv:1405.055

    Forward Analysis and Model Checking for Trace Bounded WSTS

    Full text link
    We investigate a subclass of well-structured transition systems (WSTS), the bounded---in the sense of Ginsburg and Spanier (Trans. AMS 1964)---complete deterministic ones, which we claim provide an adequate basis for the study of forward analyses as developed by Finkel and Goubault-Larrecq (Logic. Meth. Comput. Sci. 2012). Indeed, we prove that, unlike other conditions considered previously for the termination of forward analysis, boundedness is decidable. Boundedness turns out to be a valuable restriction for WSTS verification, as we show that it further allows to decide all ω\omega-regular properties on the set of infinite traces of the system

    Structural characterization of decomposition in rate-insensitive stochastic Petri nets

    Get PDF
    This paper focuses on stochastic Petri nets that have an equilibrium distribution that is a product form over the number of tokens at the places. We formulate a decomposition result for the class of nets that have a product form solution irrespective of the values of the transition rates. These nets where algebraically characterized by Haddad et al.~as SΠ2S\Pi^2 nets. By providing an intuitive interpretation of this algebraical characterization, and associating state machines to sets of TT-invariants, we obtain a one-to-one correspondence between the marking of the original places and the places of the added state machines. This enables us to show that the subclass of stochastic Petri nets under study can be decomposed into subnets that are identified by sets of its TT-invariants

    On Modelling and Analysis of Dynamic Reconfiguration of Dependable Real-Time Systems

    Full text link
    This paper motivates the need for a formalism for the modelling and analysis of dynamic reconfiguration of dependable real-time systems. We present requirements that the formalism must meet, and use these to evaluate well established formalisms and two process algebras that we have been developing, namely, Webpi and CCSdp. A simple case study is developed to illustrate the modelling power of these two formalisms. The paper shows how Webpi and CCSdp represent a significant step forward in modelling adaptive and dependable real-time systems.Comment: Presented and published at DEPEND 201

    Decidability properties for fragments of CHR

    Full text link
    We study the decidability of termination for two CHR dialects which, similarly to the Datalog like languages, are defined by using a signature which does not allow function symbols (of arity >0). Both languages allow the use of the = built-in in the body of rules, thus are built on a host language that supports unification. However each imposes one further restriction. The first CHR dialect allows only range-restricted rules, that is, it does not allow the use of variables in the body or in the guard of a rule if they do not appear in the head. We show that the existence of an infinite computation is decidable for this dialect. The second dialect instead limits the number of atoms in the head of rules to one. We prove that in this case, the existence of a terminating computation is decidable. These results show that both dialects are strictly less expressive than Turing Machines. It is worth noting that the language (without function symbols) without these restrictions is as expressive as Turing Machines

    Programmability of Chemical Reaction Networks

    Get PDF
    Motivated by the intriguing complexity of biochemical circuitry within individual cells we study Stochastic Chemical Reaction Networks (SCRNs), a formal model that considers a set of chemical reactions acting on a finite number of molecules in a well-stirred solution according to standard chemical kinetics equations. SCRNs have been widely used for describing naturally occurring (bio)chemical systems, and with the advent of synthetic biology they become a promising language for the design of artificial biochemical circuits. Our interest here is the computational power of SCRNs and how they relate to more conventional models of computation. We survey known connections and give new connections between SCRNs and Boolean Logic Circuits, Vector Addition Systems, Petri Nets, Gate Implementability, Primitive Recursive Functions, Register Machines, Fractran, and Turing Machines. A theme to these investigations is the thin line between decidable and undecidable questions about SCRN behavior
    • …
    corecore