14,587 research outputs found

    Sonolytic Decomposition of Aqueous Bioxalate in the Presence of Ozone

    Get PDF
    Ultrasonic irradiation in the presence of ozone is demonstrated to be effective for the rapid oxidation of oxalic acid, bioxalate, and oxalate (H_(2)C_(2)O_(4)/HC_(2)O_(4)−/C_(2)O_(4)^2−) in aqueous solution to CO_2 and H_(2)O. The degradation rate of bioxalate exposed to “sonozone” (i.e., simultaneous ultrasonication and ozonolysis) was found to be 16-times faster than predicted by the linear addition of ozonolysis and ultrasonic irradiation rates. The hydroxyl radical (•OH) is the only oxy-radical produced that can oxidize oxalate on a relevant time-scale. Thus, plausible •OH production mechanisms are evaluated to explain the observed kinetic synergism of ultrasonication and ozonolysis toward bioxalate decomposition. •OH production via decomposition of O_3 in the cavitating bubble vapor and via the reaction of O_3 and H_(2)O_2 are considered, but kinetic estimations and experimental evidence indicate neither to be a sufficient source of •OH. A free-radical chain mechanism is proposed in which the HC_(2)O_(4)− + •OH reaction functions as a primary propagation step, while the termination occurs through the O_3 + CO_(2)•− reaction via an O-atom transfer mechanism. Kinetic simulations confirm that ozone reacts efficiently with the superoxide (O_(2)•−) ion that is produced by the reaction of O_2 and CO_(2)•− to form •OH radical, and that the reaction of O_3 + CO_(2)•− must be chain terminating. Oxalate is also readily oxidized by “peroxone” treatment (i.e., H_(2)O_2 and O_3). However, the addition of H_(2)O_2 during the course of the sonolytic ozonation of oxalic acid does not appear to increase the observed degradation rate and decreases rates at millimolar levels

    Adsorption of Nitrobenzene from Water onto High Silica Zeolites and Regeneration by Ozone

    Get PDF
    This work investigates the removal of nitrobenzene (NB), a model pollutant from water, by combining adsorption onto zeolites and regeneration with ozone. The adsorption equilibrium isotherms of NB onto zeolites enabled the best adsorbent to be selected and zeolites with a high Si/Al ratio were the most efficient. The adsorption capacity depended on the Si/Al ratio and on the pore size. In a sequential process coupling adsorption and oxidation by ozone, NB was completely removed from water and the initial adsorption capacity of the zeolite was totally restored. Although no catalytic effect was noticed, the adsorption produced locally high concentrations, thus enhancing the oxidation rate for NB

    In-Situ Colloidal MnO2 Deposition and Ozonation of 2,4-Dinitrotoluene

    Get PDF
    Laboratory experiments are presented that demonstrate a novel in situ semipassive reactive barrier for the degradation of 2,4 dinitrotoluene created by coating aquifer surfaces by deposition of colloidal MnO2, which catalyzes ozone degradation and enhances contaminant oxidation. Ozone is added to the reactive barrier and is transported through the zone with the contaminants by existing hydraulic gradients. The communication presents the preliminary laboratory investigation demonstrating the viability of this method. Studies were conducted by coating Ottawa sand with colloidal MnO2. Results show that concentrations of MnO2 in the range of 0.2 mg/g can be deposited with no measurable change in hydraulic conductivity, that there is significant coverage of the sand material by MnO2, and the deposition was not reversible under a wide range of chemical conditions. Ozonation of 2,4-dinitrotoluene in the presence of MnO2- coated sand was demonstrated to result in pseudo-first-order degradation kinetics with respect to DNT with half-lives ranging from 28 to 22 min (at pH 6 and 7, respectively), approximately 25% faster than experiments performed in the absence of MnO2

    Sonochemical Degradation of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoate (PFOA) in Landfill Groundwater: Environmental Matrix Effects

    Get PDF
    Perfluorinated chemicals such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) are environmentally persistent and recalcitrant to most conventional chemical and microbial treatment technologies. In this paper, we show that sonolysis is able to decompose PFOS and PFOA present in groundwater beneath a landfill. However, the pseudo first-order rate constant for the sonochemical degradation in the landfill groundwater is reduced by 61 and 56% relative to MilliQ water for PFOS and PFOA, respectively, primarily due to the presence of other organic constituents. In this study, we evaluate the effect of various organic compounds on the sonochemical decomposition rates of PFOS and PFOA. Organic components in environmental matrices may reduce the sonochemical degradation rates of PFOS and PFOA by competitive adsorption onto the bubble−water interface or by lowering the average interfacial temperatures during transient bubble collapse events. The effect of individual organic compounds depends on the Langmuir adsorption constant, the Henry’s law constant, the specific heat capacity, and the overall endothermic heat of dissociation. Volatile organic compounds (VOCs) are identified as the primary cause of the sonochemical rate reduction for PFOS and PFOA in landfill groundwater, whereas the effect of dissolved natural organic matter (DOM) is not significant. Finally, a combined process of ozonation and sonolysis is shown to substantially recover the rate loss for PFOS and PFOA in landfill groundwater

    Influence of activated carbons on the kinetics and mechanisms of aromatic molecules ozonation

    Get PDF
    Companies have been looking for new methods for treating toxic or refractory wastewaters; which can mainly be used prior to or after or in connexion with biological treatment processes.This paper compares conventional ozone oxidation with activatedcarbon (AC) promoted ozone oxidation, which helps developing a mechanism involving HOradical dot radical. For a compound which is quite easy to oxidise, like 2,4-dichlorophenol (2,4-DCP) conventional ozonation is efficient enough to remove the initial molecule. The mechanism involved mainly consists of an electrophilic attack on the aromatic ring, which is activated by the donor effect of the –OH group, then followed by a 1,3 dipolar cycloaddition (Criegee mechanism) that leads to aliphatic species, mainly carboxylic acids. Yet, the addition of AC, through the presence of HOradical dot radical, enhances the removal of these species which are more refractory.For a refractory compound like nitrobenzene (NB), with a de-activatedaromatic ring because of the attractive effect of –NO2, conventional ozonation is inefficient. On the contrary, this molecule can be quite easily removed with AC promoted oxidation and it is found that the mechanism (electrophilic attack followed by a 1,3 dipolar cycloaddition) is quite similar to the one corresponding to conventional ozonation, but with less selectivity.For both molecules, a mass balance has established that the by-products accounting for more than 75% of the remaining COD can be quantified. A significant part is composed of carboxylic acids (acetic, oxalic, etc.), which could afterwards be easily removed in an industrial wastewater treatment process followed by a final biological treatment step

    Stability of Monoterpene-Derived α-Hydroxyalkyl-Hydroperoxides in Aqueous Organic Media: Relevance to the Fate of Hydroperoxides in Aerosol Particle Phases

    Get PDF
    The α-hydroxyalkyl-hydroperoxides [R–(H)C(−OH)(−OOH), α-HH] produced in the ozonolysis of unsaturated organic compounds may contribute to secondary organic aerosol (SOA) aging. α-HHs’ inherent instability, however, hampers their detection and a positive assessment of their actual role. Here we report, for the first time, the rates and products of the decomposition of the α-HHs generated in the ozonolysis of atmospherically important monoterpenes α-pinene (α-P), d-limonene (d-L), γ-terpinene (γ-Tn), and α-terpineol (α-Tp) in water/acetonitrile (W/AN) mixtures. We detect α-HHs and multifunctional decomposition products as chloride adducts by online electrospray ionization mass spectrometry. Experiments involving D₂O and H₂¹⁸O, instead of H₂¹⁶O, and an OH-radical scavenger show that α-HHs decompose into gem-diols + H₂O₂ rather than free radicals. α-HHs decay mono- or biexponentially depending on molecular structure and solvent composition. e-Fold times, τ_(1/e), in water-rich solvent mixtures range from τ_(1/e) = 15–45 min for monoterpene-derived α-HHs to τ_(1/e) > 10³ min for the α-Tp-derived α-HH. All τ_(1/e)’s dramatically increase in <20% (v/v) water. Decay rates of the α-Tp-derived α-HH in pure water increase at lower pH (2.3 ≤ pH ≤ 3.3). The hydroperoxides detected in day-old SOA samples may reflect their increased stability in water-poor media and/or the slow decomposition of α-HHs from functionalized terpenes

    Enhanced bio-recalcitrant organics removal by combined adsorption and ozonation

    Get PDF
    Removal of bio-recalcitrant and toxic compounds from wastewaters has been a major objective of industrial manufacturers for a few years. Due to the potential risk toward public health,regulations are becoming increasingly strict and classical treatments like biological treatments are not efficient. Other techniques such as incineration, oxidation or adsorption provide higher levels of removal but with a high energy and capital cost. A coupled process involving adsorption and oxidation is studied. Four adsorbents are tested and compared according to two objectives,their adsorption capacity and their capability to decompose ozone into powerful hydroxyl radicals. Two model compounds were chosen: 2,4-dichlorophenol and nitrobenzene.Experimental results allow comparing coupled process with results obtained during ozonation alone. Zeolite (Faujasite Y) gave disappointing results in term of both adsorption kinetics and ozone decomposition. On the contrary, activated carbons showed fast adsorptions and important capabilites to decompose ozone into radicals, almost in nitrobenzene experiments. S-23 activated carbon proved to be the most interesting adsorbent for better mechanical and chemical stabilities over time. Sequential adsorption/ozonation experiments were conducted,showing a strong loss of adsorption efficiency after the first operation, but the positive point is that the adsorption capacity remains almost constant during further cycles

    Microbubbles enhanced synthetic phorbol ester degradation by ozonolysis

    Get PDF
    A phorbol-12-myristate-13-acetate (TPA) is a synthetic analogue of phorbol ester (PE), a natural toxic compound of Euphorbiaceae plant. The oil extracted from plants of this family is useful source for primarily biofuel. However this oil might also be used as a foodstuff due to its significant nutrition content. The limitations for utilizing the oil as a foodstuff are mainly due to a toxicity of PE. Currently, a majority of PE detoxification processes are expensive as include multi steps alcohol extraction sequence. Ozone is considered as a strong oxidative agent. It reacts with PE by attacking the carbon-carbon double bond of PE. This modification of PE molecular structure yields a non toxic ester with high lipid content. This report presents data on development of simple and cheap PE detoxification process with water application as a buffer and ozone as reactive component. The core of this new technique is an application for a new microscale plasma unit to ozone production and the technology permits ozone injection to the water-TPA mixture in form of microbubbles. The efficacy of a heterogeneous process depends on the diffusion coefficient which can be controlled by contact time and interfacial area. The low velocity of rising microbubbles and high surface to volume ratio allow efficient mass transfer to be achieved during the process. Direct injection of ozone is the most efficient way to process with such highly reactive and short lived chemical. Data on the plasma unit behavior are presented and the influence of gas oscillation technology on the microbubble production mechanism has been discussed. Data on overall process efficacy for TPA degradation is shown

    Pretreatment of secondary effluents in view of optimal ozone-based AOP removal of trace organic contaminants : bench-scale comparison of efficiency and energy consumption

    Get PDF
    This study compares the performance of several ozone-based advanced oxidation processes (AOPs), in combination with filtration, in terms of trace organic contaminant (TrOC) removal efficiency and energy and cost requirement. It was shown that the hydroxyl radical ((OH)-O-center dot) scavenging rate of the secondary wastewater effluent decreased as a result of an additional pretreatment step, leading to an increase of ozone and (OH)-O-center dot exposures at the same ozone dose. Adding filtration such as sand filtration or granular activated carbon filtration (GACF) as a pretreatment increased the removal efficiency of TrOCs by all tested ozone-based AOPs and reduced the minimum effective ozone dose for TrOC elimination. When the applied ozone dose is more than this minimum effective ozone dose, the elimination of TrOCs can be observed. For example, because of the use of anion resin filtration, 17 alpha-ethinylestradiol elimination contributed by the process of ozone-based AOP increased from 34.6 to 42.1% at an ozone dose of 1.0 g O-3/g dissolved organic carbon. Ozone-based AOPs coupled with filtration as a pretreatment were found to be more cost-efficient than the single AOPs at all ozone dose levels. The energy consumption of ozone-based AOPs was decreased by more than 25% when applying GACF as a pretreatment. In comparison with other filtration techniques, the pretreatment of secondary effluents by GACF before ozonation was proven to be the most cost-effective method for TrOC elimination
    corecore