429 research outputs found

    Oyster – Sharing and Re-using Ontologies in a Peer-to-Peer Community

    Get PDF
    In this paper, we present Oyster, a Peer-to-Peer system for exchanging ontology metadata among communities in the Semantic Web. Oyster exploits semantic web techniques in data representation, query formulation and query result presentation to provide an online solution for sharing ontologies, thus assisting researchers in re-using existing ontologies

    Ontology Repositories

    Get PDF
    The growing use and application of ontologies in the last years has led to an increased interest of researchers and practitioners in the development of ontologies, either from scratch o by reusing existing ones. ..

    An Editorial Workflow Approach For Collaborative Ontology Development

    Get PDF
    The widespread use of ontologies in the last years has raised new challenges for their development and maintenance. Ontology development has transformed from a process normally performed by one ontology engineer into a process performed collaboratively by a team of ontology engineers, who may be geographically distributed and play different roles. For example, editors may propose changes, while authoritative users approve or reject them following a well defined process. This process, however, has only been partially addressed by existing ontology development methods, methodologies, and tool support. Furthermore, in a distributed environment where ontology editors may be working on local copies of the same ontology, strategies should be in place to ensure that changes in one copy are reflected in all of them. In this paper, we propose a workflow-based model for the collaborative development of ontologies in distributed environments and describe the components required to support them. We illustrate our model with a test case in the fishery domain from the United Nations Food and Agriculture Organisation (FAO)

    Semantic based P2P System for local e-Government

    Get PDF
    The Electronic Government is an emerging field of applications for the Semantic Web where ontologies are becoming an important research technology. The e-Government faces considerable challenges to achieve interoperability given the semantic differences of interpretation, omplexity and width of scope. This paper addresses the importance of providing an infrastructure capable of dealing with issues such as: communications between public administrations across government and retrieval of official and non official documents in a timely, secure and accurate way at the back office. A semantic peer-to-peer approach is proposed to enhance the information management at the e-Government domain; this approach is integrated with a Government Information Retrieval system and it reuses the EGO Model which can be deployed within the e-Government context

    Semantic Web Techniques to Support Interoperability in Distributed Networked Environments

    No full text
    We explore two Semantic Web techniques arising from ITA research into semantic alignment and interoperability in distributed networks. The first is POAF (Portable Ontology Aligned Fragments) which addresses issues relating to the portability and usage of ontology alignments. POAF uses an ontology fragmentation strategy to achieve portability, and enables subsequent usage through a form of automated ontology modularization. The second technique, SWEDER (Semantic Wrapping of Existing Data sources with Embedded Rules), is grounded in the creation of lightweight ontologies to semantically wrap existing data sources, to facilitate rapid semantic integration through representational homogeneity. The semantic integration is achieved through the creation of context ontologies which define the integrations and provide a portable definition of the integration rules in the form of embedded SPARQL construct clauses. These two Semantic Web techniques address important practical issues relevant to the potential future adoption of ontologies in distributed network environments

    Change Representation For OWL 2 Ontologies

    Get PDF
    Ontologies are entities that evolve over time; therefore it is essential to represent and manage changes to ontologies along with the ontologies themselves. In this paper we propose a change ontology for the OWL 2 ontology language. This change ontology comprises a fine-grained taxonomy of ontology changes that considers the lowest-level atomic operations that can be performed in an ontology, but in addition also on other abstraction levels (ontology entity, composite). It thus allows to describe on a fine grained level how an ontology has changed from one version to another, and it also provides the vocabulary to talk about the changes that enables, for instance, to associate provenance or other rich metadata, such as argumentation structures. Additionally, we discuss some useful applications of our change ontology and its technological support

    Concept-based query transformation based on semantic centrality in semantic peer-to-peer environment

    Get PDF
    jung2007bInternational audienceQuery transformation is a serious hurdle on semantic peer-to-peer environment. The problem is that the transformed queries might lose some information from the original one, as continuously traveling p2p networks. We mainly consider two factors; i) number of transformations and// ii) quality of ontology alignment. In this paper, we propose semantic centrality (SC) measurement meaning the power of semantic bridging on semantic p2p environment. Thereby, we want to build semantically cohesive user subgroups, and find out the best peers for query transformation, i.e., minimizing information loss. We have shown an example for retrieving image resources annotated on p2p environment by using query transformation based on SC

    A holistic approach to collaborative ontology development based on change management

    Get PDF
    This paper describes our methodological and technological approach for collaborative ontology development in inter-organizational settings. It is based on the formalization of the collaborative ontology development process by means of an explicit editorial workflow, which coordinates proposals for changes among ontology editors in a flexible manner. This approach is supported by new models, methods and strategies for ontology change management in distributed environments: we propose a new form of ontology change representation, organized in layers so as to provide as much independence as possible from the underlying ontology languages, together with methods and strategies for their manipulation, version management, capture, storage and maintenance, some of which are based on existing proposals in the state of the art. Moreover, we propose a set of change propagation strategies that allow keeping distributed copies of the same ontology synchronized. Finally, we illustrate and evaluate our approach with a test case in the fishery domain from the United Nations Food and Agriculture Organisation (FAO). The preliminary results obtained from our evaluation suggest positive indication on the practical value and usability of the work here presented

    Ontology engineering and routing in distributed knowledge management applications

    Get PDF
    corecore