40 research outputs found

    A Second-Order ΣΔ ADC using sputtered IGZO TFTs with multilayer dielectric

    Get PDF
    This dissertation combines materials science and electronics engineering to implement, for the first time, a 2nd-order ∑∆ ADC using oxide TFTs. The transistors employ a sputtered IGZO semiconductor and an optimizeddielectric layer, based on mixtures of sputtered Ta2O5and SiO2. These dielectrics are studied in multilayer configurations, being the best results achieved for 7 layers: IG7.5 MV/cm, while keeping κ>10, yielding a major improvement over Ta2O5single-layer. After annealing at 200 °C, TFTs with these dielectrics exhibit μSAT≈13 cm2/Vs, On/Off≈107and S≈0.2 V/dec. An a-Si:H TFT RPI model is adapted to simulate these devices with good fitting to experimental data. Concerning circuits, the ∑∆ architecture is naturally selected to deal with device mismatch. After design optimization, ADC simulations achieve SNDR≈57 dB, DR≈65 dB and power dissipation, approximately, of 22 mW (VDD=10 V), which are above the current state-of-the-art for competing thinfilm technologies, such as organics or even LTPS. Mask layouts are currently under verification to enable successful circuit fabrication in the next months.This work is a major step towards the design of complex multifunctional electronic systems with oxide TFT technology, being integrated in ongoing EU-funded and FCT-funded research projects at CENIMAT and UNINOVA

    Technology aware circuit design for smart sensors on plastic foils

    Get PDF

    Metal oxide semiconductor thin-film transistors for flexible electronics

    Get PDF
    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In particular, the realization of large-area digital circuitry like flexible near field communication tags and analog integrated circuits such as bendable operational amplifiers is presented. The last topic of this review is devoted for emerging flexible electronic systems, from foldable displays, power transmission elements to integrated systems for large-area sensing and data storage and transmission. Finally, the conclusions are drawn and an outlook over the field with a prediction for the future is provided

    Integrated Circuits/Microchips

    Get PDF
    With the world marching inexorably towards the fourth industrial revolution (IR 4.0), one is now embracing lives with artificial intelligence (AI), the Internet of Things (IoTs), virtual reality (VR) and 5G technology. Wherever we are, whatever we are doing, there are electronic devices that we rely indispensably on. While some of these technologies, such as those fueled with smart, autonomous systems, are seemingly precocious; others have existed for quite a while. These devices range from simple home appliances, entertainment media to complex aeronautical instruments. Clearly, the daily lives of mankind today are interwoven seamlessly with electronics. Surprising as it may seem, the cornerstone that empowers these electronic devices is nothing more than a mere diminutive semiconductor cube block. More colloquially referred to as the Very-Large-Scale-Integration (VLSI) chip or an integrated circuit (IC) chip or simply a microchip, this semiconductor cube block, approximately the size of a grain of rice, is composed of millions to billions of transistors. The transistors are interconnected in such a way that allows electrical circuitries for certain applications to be realized. Some of these chips serve specific permanent applications and are known as Application Specific Integrated Circuits (ASICS); while, others are computing processors which could be programmed for diverse applications. The computer processor, together with its supporting hardware and user interfaces, is known as an embedded system.In this book, a variety of topics related to microchips are extensively illustrated. The topics encompass the physics of the microchip device, as well as its design methods and applications

    Backplane Circuit Design with Amorphous Silicon Thin-Film Transistors for Flexible Displays

    Get PDF
    In recent years, rapid advancement in LED fabrication has enabled the possibility of using GaN micro-LEDs to be the light media in a display panel. It has superior performance in many aspects when compared with OLED technology, such as high contrast, wide viewing angle, and low power consumption. These advantages have enabled a possibility of using micro-LED technology to realize flexible displays. Currently, OLEDs need high mobility low-temperature-poly-silicon (LTPS) TFTs to be the backplane driving circuit material because lower mobility TFTs are inadequate to drive OLEDs. However, LTPS TFTs have poor uniformity over a large area due to unpredictable grain sizes and require additional fabrication processes which prevent it from being integrated onto a large-area flexible platform. On the other hand, conventional amorphous silicon (a-Si:H) technology used on LCD panels have an edge in terms of uniformity over large-area and low-cost fabrication. Even though the field-effect mobility of a-Si:H TFTs is much less than LTPS technology, it is sufficient to power up micro-LEDs with decent pixel density, which is impossible with OLEDs. However, the nature of amorphous materials gives rise to electrical instability issues. The output current of a-Si:H TFTs gradually decreases over time under electrical stress, which results in dimmer micro-LEDs in pixels. Moreover, the lack of complementary p-type TFTs in a-Si:H limits the integration of driver and control circuits onto the flexible platform to realize a full "system-on-flex". To overcome such shortcomings of a-Si:H technologies, this thesis makes a contribution in providing a solution to compensate the output current degradation by a novel pixel circuit with simple control scheme, as well as bootstrapped logic circuits that can be used as row driver and control circuits on flexible substrates. The proposed compensation pixel and row driver circuits can be combined to facilitate the realization of a "system-on-flex" backplane for a display panel with a-Si:H and micro-LED technologies

    Wide Bandgap Based Devices

    Get PDF
    Emerging wide bandgap (WBG) semiconductors hold the potential to advance the global industry in the same way that, more than 50 years ago, the invention of the silicon (Si) chip enabled the modern computer era. SiC- and GaN-based devices are starting to become more commercially available. Smaller, faster, and more efficient than their counterpart Si-based components, these WBG devices also offer greater expected reliability in tougher operating conditions. Furthermore, in this frame, a new class of microelectronic-grade semiconducting materials that have an even larger bandgap than the previously established wide bandgap semiconductors, such as GaN and SiC, have been created, and are thus referred to as “ultra-wide bandgap” materials. These materials, which include AlGaN, AlN, diamond, Ga2O3, and BN, offer theoretically superior properties, including a higher critical breakdown field, higher temperature operation, and potentially higher radiation tolerance. These attributes, in turn, make it possible to use revolutionary new devices for extreme environments, such as high-efficiency power transistors, because of the improved Baliga figure of merit, ultra-high voltage pulsed power switches, high-efficiency UV-LEDs, and electronics. This Special Issue aims to collect high quality research papers, short communications, and review articles that focus on wide bandgap device design, fabrication, and advanced characterization. The Special Issue will also publish selected papers from the 43rd Workshop on Compound Semiconductor Devices and Integrated Circuits, held in France (WOCSDICE 2019), which brings together scientists and engineers working in the area of III–V, and other compound semiconductor devices and integrated circuits

    Wide Bandgap Based Devices: Design, Fabrication and Applications, Volume II

    Get PDF
    Wide bandgap (WBG) semiconductors are becoming a key enabling technology for several strategic fields, including power electronics, illumination, and sensors. This reprint collects the 23 papers covering the full spectrum of the above applications and providing contributions from the on-going research at different levels, from materials to devices and from circuits to systems

    High voltage metal oxide thin film transistors to drive arrays of dielectric elastomer actuators

    Get PDF
    This thesis advances the field of high-voltage thin film transistors (HVTFTs) and dielectric elastomer actuators (DEAs) by demonstrating a strategy for low-voltage addressing of an array of high voltage soft actuators suspended on a flexible substrate. First, I present the first HVTFTs operating at 1 kV drain-source voltage, switching with an on-off ratio of 20 at 80 V gate-source voltage. The HVTFTs can operate at high voltage thanks to geometrical features increasing the breakdown voltage: a thick gate dielectric composed of a bilayer of alumina (100 nm) and Parylene-C (1 um), a long semiconducting channel (500 um), and a 150 &mlong non-gated region between the drain and the gate electrode called the offset gate. The use of an amorphous oxide semiconductor (AOS), zinc tin oxide (ZTO), enables a high on-currents of 0.1 mA. The ZTO was synthesized by a sol-gel process after spin-coating on a flexible polyimide substrate, previously passivated with alumina. I optimized the HVTFT switching properties by doping the ZTO layer with yttrium (5%). It improved the on-off ratio up to 1000 at 500 V operation voltage by decreasing the leakage current down to 100 nA. Then, I show the first integration of HVTFTs with DEAs. My ZTO HVTFTs switch DEAs on and off with only 30 V gate voltage under a bias voltage of 1.4 kV. The system time response in 50 ms. The demonstrator is a 4x4 array of diaphragm DEAs. A layer of 4x4 DEAs is suspended over a layer of 4x4 HVTFTs built on flexible polyimide. The DEAs and the HVTFTs were interconnected thanks to a flexible PCB in a resistive load inverter circuit architecture. A flexible 3D printed chamber was constantly biasing the DEA diaphragms with a back-pressure. The DEAs were made of PDMS and the active region is defined by overlapping carbon-PDMS electrodes. The device operates down to a 5mm radius of curvature. Finally, I demonstrate latching of the HVTFT and the DEA by using triboelectric sensors. Under a constant 500 V circuit bias, the control of the HVTFT gate with triboelectric generators enabled 4s latching of the inverter output voltage at 470 V for the off-state and at 120 V for the on-state. The latching of the DEAs with the HVTFT circuit finally proves that this approach can lead to a bistable control of DEAs. This PhD thesis results show that my HVTFTs are versatile components usable not only to address DEAs but also to interface low voltage sensors with high voltage actuators

    Printed and drawn flexible electronics based on cellulose nanocomposites

    Get PDF
    Sustainability, flexibility, and low-power consumption are key features to meet the growing re- quirements of simplicity and multifunctionality of low-cost, disposable/recyclable smart electronic -of- -based composites hold po- tential to fulfill such demands when explored as substrate and/or electrolyte-gate, or as active channel layer on printed transistors and integrated circuits based on ionic responses (iontronics). In this work, a new generation of reusable, healable and recyclable regenerated cellulose hydro- gels with high ionic conductivity and conformability, capable of being provided in the form of stick- ers, are demonstrated. These hydrogels are obtained from a simple, fast, low-cost, and environ- mental-friendly aqueous alkali salt/urea dissolution method of native cellulose, combined with eration and simultaneous ion incorporation with acetic acid. Their electrochemical properties can be also merged with the mechanical robustness, thermal resistance, transparency, and smooth- - strate. Beyond gate dielectrics, a water-based screen-printable ink, composed of CMC binder and com- mercial zinc oxide (ZnO) semiconducting nanoparticles, was formulated. The ink enables the printing of relatively smooth and densely packed films on office paper with semiconducting func- tionality at room temperature. The rather use of porous ZnO nanoplates is beneficial to form per- colative pathways at lower contents of functional material, at the cost of rougher surfaces. The engineered cellulose composites are successfully integrated into flexible, recyclable, low- voltage (<3.5 V), printed electrolyte-gated office paper or on the ionically modified nanopaper. Ubiquitous calligraphy accessories are used -the- out on the target substrate, where are already printed the devices. Such concept paves the way for a worldwide boom of creativity, where we can freely create personal electronic kits, while having fun at it and without generating waste.Sustentabilidade, flexibilidade e baixo consumo energético são características chave para atender aos crescentes requisitos de simplicidade e multifuncionalidade de sistemas eletrónicos inteligentes de baixo custo, das- Compósitos à base de celulose têm potencial para atender a tais necessidades quando explora- dos como substrato e/ou porta-de-eletrólito ou como camada de canal ativo em transístores impressos e circuitos integrados baseados em respostas iónicas (iontronics). Neste trabalho, é demonstrada uma nova geração de hidrogéis reutilizáveis, reparáveis e recicláveis baseados em celulose regenerada, que apresentam alta condução iónica e conformabilidade, podendo ser fornecidos na forma de adesivos. Estes hidrogéis são obtidos a partir de um método simples, rápido, barato e amigo do ambiente que permite a dissolução de celulose nativa em soluções aquosas com mistura de sal alcalino e ureia, combinado com carboximetil celulose (CMC) para melhorar a sua robustez, seguido da regeneração e simultâneo enriquecimento iónico com ácido acético. As suas propriedades eletroquímicas podem ser combinadas com a inbase de celulose micro/nanofibrilada para obter um substrato eletrolítico semelhante a papel. Para além de portas-dielétricas, foi formulada uma tinta aquosa compatível com serigrafia, composta por CMC como espessante e nanopartículas semicondutoras de ZnO. A tinta permite a impressão de filmes pouco rugosos e densamente percolados sobre papel de escritório, e com funcionalidade semicondutora à temperatura ambiente. O uso alternativo de nanoplacas porosas de ZnO é benéfico para criar caminhos percolativos com menores teores de material funcional, apesar de se obter filmes rugosos. Os compósitos à base celulose foram integrados com sucesso em transístores e portas lógicas porta-eletrolítica, os quais foram impressos em papel de escritório ou no "nanopapel" iconicamente modificado. Acessórios de caligrafia permitem a fácil e rápida padronização de pistas condutoras/resistivas, desenhando-as no substrato alvo, onde estão impressos os dispositivos. Este conceito despoleta um mundo criativo, onde é possível criar livremente kits eletrónicos customizados de forma divertida e sem gerar resíduos

    JTEC panel on display technologies in Japan

    Get PDF
    This report is one in a series of reports that describes research and development efforts in Japan in the area of display technologies. The following are included in this report: flat panel displays (technical findings, liquid crystal display development and production, large flat panel displays (FPD's), electroluminescent displays and plasma panels, infrastructure in Japan's FPD industry, market and projected sales, and new a-Si active matrix liquid crystal display (AMLCD) factory); materials for flat panel displays (liquid crystal materials, and light-emissive display materials); manufacturing and infrastructure of active matrix liquid crystal displays (manufacturing logistics and equipment); passive matrix liquid crystal displays (LCD basics, twisted nematics LCD's, supertwisted nematic LCD's, ferroelectric LCD's, and a comparison of passive matrix LCD technology); active matrix technology (basic active matrix technology, investment environment, amorphous silicon, polysilicon, and commercial products and prototypes); and projection displays (comparison of Japanese and U.S. display research, and technical evaluation of work)
    corecore