25,657 research outputs found

    Classification and Retrieval of Digital Pathology Scans: A New Dataset

    Full text link
    In this paper, we introduce a new dataset, \textbf{Kimia Path24}, for image classification and retrieval in digital pathology. We use the whole scan images of 24 different tissue textures to generate 1,325 test patches of size 1000×\times1000 (0.5mm×\times0.5mm). Training data can be generated according to preferences of algorithm designer and can range from approximately 27,000 to over 50,000 patches if the preset parameters are adopted. We propose a compound patch-and-scan accuracy measurement that makes achieving high accuracies quite challenging. In addition, we set the benchmarking line by applying LBP, dictionary approach and convolutional neural nets (CNNs) and report their results. The highest accuracy was 41.80\% for CNN.Comment: Accepted for presentation at Workshop for Computer Vision for Microscopy Image Analysis (CVMI 2017) @ CVPR 2017, Honolulu, Hawai

    Medical image retrieval and automatic annotation: VPA-SABANCI at ImageCLEF 2009

    Get PDF
    Advances in the medical imaging technology has lead to an exponential growth in the number of digital images that needs to be acquired, analyzed, classified, stored and retrieved in medical centers. As a result, medical image classification and retrieval has recently gained high interest in the scientific community. Despite several attempts, such as the yearly-held ImageCLEF Medical Image Annotation Competition, the proposed solutions are still far from being su±ciently accurate for real-life implementations. In this paper we summarize the technical details of our experiments for the ImageCLEF 2009 medical image annotation task. We use a direct and two hierarchical classification schemes that employ support vector machines and local binary patterns, which are recently developed low-cost texture descriptors. The direct scheme employs a single SVM to automatically annotate X-ray images. The two proposed hierarchi-cal schemes divide the classification task into sub-problems. The first hierarchical scheme exploits ensemble SVMs trained on IRMA sub-codes. The second learns from subgroups of data defined by frequency of classes. Our experiments show that hier-archical annotation of images by training individual SVMs over each IRMA sub-code dominates its rivals in annotation accuracy with increased process time relative to the direct scheme
    corecore