3,415 research outputs found

    Automatic refocus and feature extraction of single-look complex SAR signatures of vessels

    Get PDF
    In recent years, spaceborne synthetic aperture radar ( SAR) technology has been considered as a complement to cooperative vessel surveillance systems thanks to its imaging capabilities. In this paper, a processing chain is presented to explore the potential of using basic stripmap single-look complex ( SLC) SAR images of vessels for the automatic extraction of their dimensions and heading. Local autofocus is applied to the vessels' SAR signatures to compensate blurring artefacts in the azimuth direction, improving both their image quality and their estimated dimensions. For the heading, the orientation ambiguities of the vessels' SAR signatures are solved using the direction of their ground-range velocity from the analysis of their Doppler spectra. Preliminary results are provided using five images of vessels from SLC RADARSAT-2 stripmap images. These results have shown good agreement with their respective ground-truth data from Automatic Identification System ( AIS) records at the time of the acquisitions.Postprint (published version

    NASA/JPL Aircraft SAR Workshop Proceedings

    Get PDF
    Speaker-supplied summaries of the talks given at the NASA/JPL Aircraft SAR Workshop on February 4 and 5, 1985, are provided. These talks dealt mostly with composite quadpolarization imagery from a geologic or ecologic prespective. An overview and summary of the system characteristics of the L-band synthetic aperture radar (SAR) flown on the NASA CV-990 aircraft are included as supplementary information. Other topics ranging from phase imagery and interferometric techniques classifications of specific areas, and the potentials and limitations of SAR imagery in various applications are discussed

    Performance of Scattering Matrix Decomposition and Color Spaces for Synthetic Aperture Radar Imagery

    Get PDF
    Polarimetrc Synthetic Aperture Radar (SAR) has been shown to be a powerful tool in remote sensing because uses up to four simultaneous measurements giving additional degrees of freedom for processing. Typically, polarization decomposition techniques are applied to the polarization-dependent data to form colorful imagery that is easy for operators systems to interpret. Yet, the presumption is that the SAR system operates with maximum bandwidth which requires extensive processing for near- or real-time application. In this research, color space selection is investigated when processing sparse polarimetric SAR data as in the case of the publicly available \Gotcha Volumetric SAR Data Set, Version 1:0 . To improve information quality in resultant color imagery, three scattering matrix decompositions were investigated (linear, Pauli and Krogager) using two common color spaces (RGB, CMY) to determine the best combination for accurate feature extraction. A mathematical model is presented for each decomposition technique and color space to the Cramer-Rao lower bound (CRLB) and quantify the performance bounds from an estimation perspective for given SAR system and processing parameters. After a deep literature review in color science, the mathematical model for color spaces was not able to be computed together with the mathematical model for decomposition techniques. The color spaces used for this research were functions of variables that are out of the scope of electrical engineering research and include factors such as the way humans sense color, environment influences in the color stimulus and device technical characteristics used to display the SAR image. Hence, SAR imagery was computed for specific combinations of decomposition technique and color space and allow the reader to gain an abstract view of the performance differences

    Wide-Angle Multistatic Synthetic Aperture Radar: Focused Image Formation and Aliasing Artifact Mitigation

    Get PDF
    Traditional monostatic Synthetic Aperture Radar (SAR) platforms force the user to choose between two image types: larger, low resolution images or smaller, high resolution images. Switching to a Wide-Angle Multistatic Synthetic Aperture Radar (WAM-SAR) approach allows formation of large high-resolution images. Unfortunately, WAM-SAR suffers from two significant implementation problems. First, wavefront curvature effects, non-linear flight paths, and warped ground planes lead to image defocusing with traditional SAR processing methods. A new 3-D monostatic/bistatic image formation routine solves the defocusing problem, correcting for all relevant wide-angle effects. Inverse SAR (ISAR) imagery from a Radar Cross Section (RCS) chamber validates this approach. The second implementation problem stems from the large Doppler spread in the wide-angle scene, leading to severe aliasing problems. This research effort develops a new anti-aliasing technique using randomized Stepped-Frequency (SF) waveforms to form Doppler filter nulls coinciding with aliasing artifact locations. Both simulation and laboratory results demonstrate effective performance, eliminating more than 99% of the aliased energy

    Factorized Geometrical Autofocus for Synthetic Aperture Radar Processing

    Get PDF
    Synthetic Aperture Radar (SAR) imagery is a very useful resource for the civilian remote sensing community and for the military. This however presumes that images are focused. There are several possible sources for defocusing effects. For airborne SAR, motion measurement errors is the main cause. A defocused image may be compensated by way of autofocus, estimating and correcting erroneous phase components. Standard autofocus strategies are implemented as a separate stage after the image formation (stand-alone autofocus), neglecting the geometrical aspect. In addition, phase errors are usually assumed to be space invariant and confined to one dimension. The call for relaxed requirements on inertial measurement systems contradicts these criteria, as it may introduce space variant phase errors in two dimensions, i.e. residual space variant Range Cell Migration (RCM). This has motivated the development of a new autofocus approach. The technique, termed the Factorized Geometrical Autofocus (FGA) algorithm, is in principle a Fast Factorized Back-Projection (FFBP) realization with a number of adjustable (geometry) parameters for each factorization step. By altering the aperture in the time domain, it is possible to correct an arbitrary, inaccurate geometry. This in turn indicates that the FGA algorithm has the capacity to compensate for residual space variant RCM. In appended papers the performance of the algorithm is demonstrated for geometrically constrained autofocus problems. Results for simulated and real (Coherent All RAdio BAnd System II (CARABAS II)) Ultra WideBand (UWB) data sets are presented. Resolution and Peak to SideLobe Ratio (PSLR) values for (point/point-like) targets in FGA and reference images are similar within a few percents and tenths of a dB. As an example: the resolution of a trihedral reflector in a reference image and in an FGA image respectively, was measured to approximately 3.36 m/3.44 m in azimuth, and to 2.38 m/2.40 m in slant range; the PSLR was in addition measured to about 6.8 dB/6.6 dB. The advantage of a geometrical autofocus approach is clarified further by comparing the FGA algorithm to a standard strategy, in this case the Phase Gradient Algorithm (PGA)

    Long-term monitoring of geodynamic surface deformation using SAR interferometry

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2014Synthetic Aperture Radar Interferometry (InSAR) is a powerful tool to measure surface deformation and is well suited for surveying active volcanoes using historical and existing satellites. However, the value and applicability of InSAR for geodynamic monitoring problems is limited by the influence of temporal decorrelation and electromagnetic path delay variations in the atmosphere, both of which reduce the sensitivity and accuracy of the technique. The aim of this PhD thesis research is: how to optimize the quantity and quality of deformation signals extracted from InSAR stacks that contain only a low number of images in order to facilitate volcano monitoring and the study of their geophysical signatures. In particular, the focus is on methods of mitigating atmospheric artifacts in interferograms by combining time-series InSAR techniques and external atmospheric delay maps derived by Numerical Weather Prediction (NWP) models. In the first chapter of the thesis, the potential of the NWP Weather Research & Forecasting (WRF) model for InSAR data correction has been studied extensively. Forecasted atmospheric delays derived from operational High Resolution Rapid Refresh for the Alaska region (HRRRAK) products have been compared to radiosonding measurements in the first chapter. The result suggests that the HRRR-AK operational products are a good data source for correcting atmospheric delays in spaceborne geodetic radar observations, if the geophysical signal to be observed is larger than 20 mm. In the second chapter, an advanced method for integrating NWP products into the time series InSAR workflow is developed. The efficiency of the algorithm is tested via simulated data experiments, which demonstrate the method outperforms other more conventional methods. In Chapter 3, a geophysical case study is performed by applying the developed algorithm to the active volcanoes of Unimak Island Alaska (Westdahl, Fisher and Shishaldin) for long term volcano deformation monitoring. The volcano source location at Westdahl is determined to be approx. 7 km below sea level and approx. 3.5 km north of the Westdahl peak. This study demonstrates that Fisher caldera has had continuous subsidence over more than 10 years and there is no evident deformation signal around Shishaldin peak.Chapter 1. Performance of the High Resolution Atmospheric Model HRRR-AK for Correcting Geodetic Observations from Spaceborne Radars -- Chapter 2. Robust atmospheric filtering of InSAR data based on numerical weather prediction models -- Chapter 3. Subtle motion long term monitoring of Unimak Island from 2003 to 2010 by advanced time series SAR interferometry -- Chapter 4. Conclusion and future work

    Improvement of Continuous Wave Radar Measurements in a Partially Controlled Environment

    Get PDF
    A continuous wave (CW) radar system within a partially controlled environment measures scale model aircraft for mono-static and fully polarimetric radar imaging. Due to a pseudo-far-field setup, wavefront curvature manifests primarily as geometric distortion. Recently proposed phase error models show induced geometric distortion to be independent of aperture size which are verified via measurement for Sensors and Signals Exploitation Laboratory (SSEL) collections. The partially controlled nature of the SSEL introduces stray infrastructural reflections into the measured data. Three methods to reduce stray signals are explored namely: true background subtraction (TBS), running average (RA), and spatial filtering (SF). Of the three methods, SF provides 15 dB improvement in dynamic range revealing underlying SSEL structure. Defocus due to quadratic phase error (QPE) is considered, but shown to be negligible for typical aperture sizes of 20 degrees

    Phase History Decomposition for Efficient Scatterer Classification in SAR Imagery

    Get PDF
    A new theory and algorithm for scatterer classification in SAR imagery is presented. The automated classification process is operationally efficient compared to existing image segmentation methods requiring human supervision. The algorithm reconstructs coarse resolution subimages from subdomains of the SAR phase history. It analyzes local peaks in the subimages to determine locations and geometric shapes of scatterers in the scene. Scatterer locations are indicated by the presence of a stable peak in all subimages for a given subaperture, while scatterer shapes are indicated by changes in pixel intensity. A new multi-peak model is developed from physical models of electromagnetic scattering to predict how pixel intensities behave for different scatterer shapes. The algorithm uses a least squares classifier to match observed pixel behavior to the model. Classification accuracy improves with increasing fractional bandwidth and is subject to the high-frequency and wide-aperture approximations of the multi-peak model. For superior computational efficiency, an integrated fast SAR imaging technique is developed to combine the coarse resolution subimages into a final SAR image having fine resolution. Finally, classification results are overlaid on the SAR image so that analysts can deduce the significance of the scatterer shape information within the image context

    Levee Slide Detection using Synthetic Aperture Radar Magnitude and Phase

    Get PDF
    The objectives of this research are to support the development of state-of-the-art methods using remotely sensed data to detect slides or anomalies in an efficient and cost-effective manner based on the use of SAR technology. Slough or slump slides are slope failures along a levee, which leave areas of the levee vulnerable to seepage and failure during high water events. This work investigates the facility of detecting the slough slides on an earthen levee with different types of polarimetric Synthetic Aperture Radar (polSAR) imagery. The source SAR imagery is fully quad-polarimetric L-band data from the NASA Jet Propulsion Laboratory’s (JPL’s) Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The study area encompasses a portion of the levees of the lower Mississippi river, located in Mississippi, United States. The obtained classification results reveal that the polSAR data unsupervised classification with features extraction produces more appropriate results than the unsupervised classification with no features extraction. Obviously, supervised classification methods provide better classification results compared to the unsupervised methods. The anomaly identification is good with these results and was improved with the use of a majority filter. The classification accuracy is further improved with a morphology filter. The classification accuracy is significantly improved with the use of GLCM features. The classification results obtained for all three cases (magnitude, phase, and complex data), with classification accuracies for the complex data being higher, indicate that the use of synthetic aperture radar in combination with remote sensing imagery can effectively detect anomalies or slides on an earthen levee. For all the three samples it consistently shows that the accuracies for the complex data are higher when compared to those from the magnitude and phase data alone. The tests comparing complex data features to magnitude and phase data alone, and full complex data, and use of post-processing filter, all had very high accuracy. Hence we included more test samples to validate and distinguish results

    A Sensitivity Study of L-Band Synthetic Aperture Radar Measurements to the Internal Variations and Evolving Nature of Oil Slicks

    Get PDF
    This thesis focuses on the use of multi-polarization synthetic aperture radar (SAR) for characterization of marine oil spills. In particular, the potential of detecting internal zones within oil slicks in SAR scenes are investigated by a direct within-slick segmentation scheme, along with a sensitivity study of SAR measurements to the evolving nature of oil slicks. A simple, k-means clustering algorithm, along with a Gaussian Mixture Model are separately applied, giving rise to a comparative study of the internal class structures obtained by both strategies. As no optical imagery is available for verification, the within-slick segmentations are evaluated with respect to the behavior of a set of selected polarimetric features, the prevailing wind conditions and weathering processes. In addition, a fake zone detection scheme is established to help determine if the class structures obtained potentially reflect actual internal variations within the slicks. Further, the evolving nature of oil slicks is studied based on the temporal development of a set of selected geometric region descriptors. Two data sets are available for the investigation presented in this thesis, both captured by a full-polarization L-band airborne SAR system with high spatial- and temporal resolution. The results obtained with respect to the zone detection scheme developed supports the hypothesis of the existence of detectable zones within oil spills in SAR scenes. Additionally, the method established for studying the evolving nature of oil slicks is found convenient for accessing the general behavior of the slicks, and simplifies interpretation
    • …
    corecore