278 research outputs found

    Multi-standard reconfigurable motion estimation processor for hybrid video codecs

    Get PDF

    Comparative analysis of DIRAC PRO-VC-2, H.264 AVC and AVS CHINA-P7

    Get PDF
    Video codec compresses the input video source to reduce storage and transmission bandwidth requirements while maintaining the quality. It is an essential technology for applications, to name a few such as digital television, DVD-Video, mobile TV, videoconferencing and internet video streaming. There are different video codecs used in the industry today and understanding their operation to target certain video applications is the key to optimization. The latest advanced video codec standards have become of great importance in multimedia industries which provide cost-effective encoding and decoding of video and contribute for high compression and efficiency. Currently, H.264 AVC, AVS, and DIRAC are used in the industry to compress video. H.264 codec standard developed by the ITU-T Video Coding Experts Group (VCEG) together with the ISO/IEC Moving Picture Experts Group (MPEG). Audio-video coding standard (AVS) is a working group of audio and video coding standard in China. VC-2, also known as Dirac Pro developed by BBC, is a royalty free technology that anyone can use and has been standardized through the SMPTE as VC-2. H.264 AVC, Dirac Pro, Dirac and AVS-P2 are dedicated to High Definition Video, while AVS-P7 is to mobile video. Out of many standards, this work performs a comparative analysis for the H.264 AVC, DIRAC PRO/SMPTE-VC-2 and AVS-P7 standards in low bitrate region and high bitrate region. Bitrate control and constant QP are the methods which are employed for analysis. Evaluation parameters like Compression Ratio, PSNR and SSIM are used for quality comparison. Depending on target application and available bitrate, order of performance is mentioned to show the preferred codec

    Video Decoder Reconfigurations and AVS Extensions in the New MPEG Reconfigurable Video Coding Framework

    Get PDF
    In 2004, ISO/IEC SC29 better known as MPEG started a new standard initiative aiming at facilitating the deployment of multi-format video codec design and to enable the possibility of reconfiguring video codecs using a library of standard components. The new standard under development is called MPEG Reconfigurable Video Coding (RVC) framework. Whereas video coding tools are specified in the RVC library, when a new decoder is reconfigured choosing in principle any (sub)-set of tools, the corresponding bitstream syntax, described using MPEG-21 BSDL schema, and the associated parser need to be respectively derived and instantiated reconfiguration by reconfiguration. Therefore, the development of an efficient systematic procedure able to instantiate efficient bitstream parsing and particularly variable length decoding is an important component in RVC. This paper introduces an efficient data flow based implementation of the variable length decoding (VLD) process particularly adapted for the instantiation and synthesis of CAL parsers in the MPEG RVC framework

    Quality-Oriented Mobility Management for Multimedia Content Delivery to Mobile Users

    Get PDF
    The heterogeneous wireless networking environment determined by the latest developments in wireless access technologies promises a high level of communication resources for mobile computational devices. Although the communication resources provided, especially referring to bandwidth, enable multimedia streaming to mobile users, maintaining a high user perceived quality is still a challenging task. The main factors which affect quality in multimedia streaming over wireless networks are mainly the error-prone nature of the wireless channels and the user mobility. These factors determine a high level of dynamics of wireless communication resources, namely variations in throughput and packet loss as well as network availability and delays in delivering the data packets. Under these conditions maintaining a high level of quality, as perceived by the user, requires a quality oriented mobility management scheme. Consequently we propose the Smooth Adaptive Soft-Handover Algorithm, a novel quality oriented handover management scheme which unlike other similar solutions, smoothly transfer the data traffic from one network to another using multiple simultaneous connections. To estimate the capacity of each connection the novel Quality of Multimedia Streaming (QMS) metric is proposed. The QMS metric aims at offering maximum flexibility and efficiency allowing the applications to fine tune the behavior of the handover algorithm. The current simulation-based performance evaluation clearly shows the better performance of the proposed Smooth Adaptive Soft-Handover Algorithm as compared with other handover solutions. The evaluation was performed in various scenarios including multiple mobile hosts performing handover simultaneously, wireless networks with variable overlapping areas, and various network congestion levels
    corecore