707 research outputs found

    Architectures and Key Technical Challenges for 5G Systems Incorporating Satellites

    Get PDF
    Satellite Communication systems are a promising solution to extend and complement terrestrial networks in unserved or under-served areas. This aspect is reflected by recent commercial and standardisation endeavours. In particular, 3GPP recently initiated a Study Item for New Radio-based, i.e., 5G, Non-Terrestrial Networks aimed at deploying satellite systems either as a stand-alone solution or as an integration to terrestrial networks in mobile broadband and machine-type communication scenarios. However, typical satellite channel impairments, as large path losses, delays, and Doppler shifts, pose severe challenges to the realisation of a satellite-based NR network. In this paper, based on the architecture options currently being discussed in the standardisation fora, we discuss and assess the impact of the satellite channel characteristics on the physical and Medium Access Control layers, both in terms of transmitted waveforms and procedures for enhanced Mobile BroadBand (eMBB) and NarrowBand-Internet of Things (NB-IoT) applications. The proposed analysis shows that the main technical challenges are related to the PHY/MAC procedures, in particular Random Access (RA), Timing Advance (TA), and Hybrid Automatic Repeat reQuest (HARQ) and, depending on the considered service and architecture, different solutions are proposed.Comment: Submitted to Transactions on Vehicular Technologies, April 201

    Coverage and Deployment Analysis of Narrowband Internet of Things in the Wild

    Full text link
    Narrowband Internet of Things (NB-IoT) is gaining momentum as a promising technology for massive Machine Type Communication (mMTC). Given that its deployment is rapidly progressing worldwide, measurement campaigns and performance analyses are needed to better understand the system and move toward its enhancement. With this aim, this paper presents a large scale measurement campaign and empirical analysis of NB-IoT on operational networks, and discloses valuable insights in terms of deployment strategies and radio coverage performance. The reported results also serve as examples showing the potential usage of the collected dataset, which we make open-source along with a lightweight data visualization platform.Comment: Accepted for publication in IEEE Communications Magazine (Internet of Things and Sensor Networks Series

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Positioning for the Internet of Things: A 3GPP Perspective

    Full text link
    Many use cases in the Internet of Things (IoT) will require or benefit from location information, making positioning a vital dimension of the IoT. The 3rd Generation Partnership Project (3GPP) has dedicated a significant effort during its Release 14 to enhance positioning support for its IoT technologies to further improve the 3GPP-based IoT eco-system. In this article, we identify the design challenges of positioning support in Long-Term Evolution Machine Type Communication (LTE-M) and Narrowband IoT (NB-IoT), and overview the 3GPP's work in enhancing the positioning support for LTE-M and NB-IoT. We focus on Observed Time Difference of Arrival (OTDOA), which is a downlink based positioning method. We provide an overview of the OTDOA architecture and protocols, summarize the designs of OTDOA positioning reference signals, and present simulation results to illustrate the positioning performance.Comment: 8 pages; 7 figures; 1 table; submitted for publicatio
    • …
    corecore