7,618 research outputs found

    Embodied & Situated Language Processing

    Get PDF

    Conflict monitoring in speech processing: an fMRI study of error detection in speech production and perception

    Get PDF
    To minimize the number of errors in speech, and thereby facilitate communication, speech is monitored before articulation. It is, however, unclear at which level during speech production monitoring takes place, and what mechanisms are used to detect and correct errors. The present study investigated whether internal verbal monitoring takes place through the speech perception system, as proposed by perception-based theories of speech monitoring, or whether mechanisms independent of perception are applied, as proposed by production-based theories of speech monitoring. With the use of fMRI during a tongue twister task we observed that error detection in internal speech during noise-masked overt speech production and error detection in speech perception both recruit the same neural network, which includes pre-supplementary motor area (pre-SMA), dorsal anterior cingulate cortex (dACC), anterior insula (AI), and inferior frontal gyrus (IFG). Although production and perception recruit similar areas, as proposed by perception-based accounts, we did not find activation in superior temporal areas (which are typically associated with speech perception) during internal speech monitoring in speech production as hypothesized by these accounts. On the contrary, results are highly compatible with a domain general approach to speech monitoring, by which internal speech monitoring takes place through detection of conflict between response options, which is subsequently resolved by a domain general executive center (e.g., the ACC)

    The neural correlates of referential communication : taking advantage of sparse-sampling fMRI to study verbal communication with a real interaction partner

    Get PDF
    This paper introduces an innovative functional magnetic resonance imaging (fMRI) protocol to study real verbal interactions while limiting the impact of speech-related movement artefacts. This protocol is based on a sparse sampling acquisition technique and allowed participants to complete a referential communication task with a real interaction partner. During verbal interactions, speakers adjust their verbal productions depending on their interlocutors' knowledge of the referents being mentioned. These adjustments have been linked to theory of mind (ToM), the ability to infer other's mental states. We thus sought to determine if the brain regions supporting ToM would also be activated during a referential communication task in which participants have to present movie characters that vary in their likelihood of being known by their interlocutor. This pilot study establishes that the sparse sampling strategy is a viable option to study the neural correlates of referential communication while minimizing movement artefacts. In addition, the brain regions supporting ToM were recruited during the task, though specifically for the conditions where participants could adjust their verbal productions to the interlocutor's likely knowledge of the referent. This study therefore demonstrates the feasibility and relevance of a sparse-sampling approach to study verbal interactions with fMRI, including referential communication

    The social brain: neural basis of social knowledge

    Get PDF
    Social cognition in humans is distinguished by psychological processes that allow us to make inferences about what is going on inside other people—their intentions, feelings, and thoughts. Some of these processes likely account for aspects of human social behavior that are unique, such as our culture and civilization. Most schemes divide social information processing into those processes that are relatively automatic and driven by the stimuli, versus those that are more deliberative and controlled, and sensitive to context and strategy. These distinctions are reflected in the neural structures that underlie social cognition, where there is a recent wealth of data primarily from functional neuroimaging. Here I provide a broad survey of the key abilities, processes, and ways in which to relate these to data from cognitive neuroscience

    Utilizing Visual Attention and Inclination to Facilitate Brain-Computer Interface Design in an Amyotrophic Lateral Sclerosis Sample

    Get PDF
    Individuals who suffer from amyotrophic lateral sclerosis (ALS) have a loss of motor control and possibly the loss of speech. A brain-computer interface (BCI) provides a means for communication through nonmuscular control. Visual BCIs have shown the highest potential when compared to other modalities; nonetheless, visual attention concepts are largely ignored during the development of BCI paradigms. Additionally, individual performance differences and personal preference are not considered in paradigm development. The traditional method to discover the best paradigm for the individual user is trial and error. Visual attention research and personal preference provide the building blocks and guidelines to develop a successful paradigm. This study is an examination of a BCI-based visual attention assessment in an ALS sample. This assessment takes into account the individual’s visual attention characteristics, performance, and personal preference to select a paradigm. The resulting paradigm is optimized to the individual and then tested online against the traditional row-column paradigm. The optimal paradigm had superior performance and preference scores over row-column. These results show that the BCI needs to be calibrated to individual differences in order to obtain the best paradigm for an end user
    • …
    corecore