941 research outputs found

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    Proton beam steering control system for high precision radiotherapy at iThemba LABS : an investigation on actuator saturation constraints

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 101-106).This thesis aims at studying some of the techniques used to deal with constraints with special application to the Proton beam steering control at iThemba LABS. The steering of charged particles occurring in research plants is one of the interests of control systems. In this work an investigation of the algorithm for the control of the proton beam steering system in the radiotherapy treatment facility at iThemba LABS is conducted. This algorithm is intended to autonomously maintain the beam centered with reference to the axis of the beamline, and keep the beam front parallel to the central axis of the beamline as stated by van Tubbergh and De Kock, 2006. Furthermore, the algorithm is responsible for monitoring the distribution of the proton beam, in a plane normal to the beam travel direction

    Steering control for haptic feedback and active safety functions

    Get PDF
    Steering feedback is an important element that defines driver–vehicle interaction. It strongly affects driving performance and is primarily dependent on the steering actuator\u27s control strategy. Typically, the control method is open loop, that is without any reference tracking; and its drawbacks are hardware dependent steering feedback response and attenuated driver–environment transparency. This thesis investigates a closed-loop control method for electric power assisted steering and steer-by-wire systems. The advantages of this method, compared to open loop, are better hardware impedance compensation, system independent response, explicit transparency control and direct interface to active safety functions.The closed-loop architecture, outlined in this thesis, includes a reference model, a feedback controller and a disturbance observer. The feedback controller forms the inner loop and it ensures: reference tracking, hardware impedance compensation and robustness against the coupling uncertainties. Two different causalities are studied: torque and position control. The two are objectively compared from the perspective of (uncoupled and coupled) stability, tracking performance, robustness, and transparency.The reference model forms the outer loop and defines a torque or position reference variable, depending on the causality. Different haptic feedback functions are implemented to control the following parameters: inertia, damping, Coulomb friction and transparency. Transparency control in this application is particularly novel, which is sequentially achieved. For non-transparent steering feedback, an environment model is developed such that the reference variable is a function of virtual dynamics. Consequently, the driver–steering interaction is independent from the actual environment. Whereas, for the driver–environment transparency, the environment interaction is estimated using an observer; and then the estimated signal is fed back to the reference model. Furthermore, an optimization-based transparency algorithm is proposed. This renders the closed-loop system transparent in case of environmental uncertainty, even if the initial condition is non-transparent.The steering related active safety functions can be directly realized using the closed-loop steering feedback controller. This implies, but is not limited to, an angle overlay from the vehicle motion control functions and a torque overlay from the haptic support functions.Throughout the thesis, both experimental and the theoretical findings are corroborated. This includes a real-time implementation of the torque and position control strategies. In general, it can be concluded that position control lacks performance and robustness due to high and/or varying system inertia. Though the problem is somewhat mitigated by a robust H-infinity controller, the high frequency haptic performance remains compromised. Whereas, the required objectives are simultaneously achieved using a torque controller

    Boundary tracking and source seeking of oceanic features using autonomous vehicles

    Get PDF
    The thesis concerns the study and the development of boundary tracking and source seeking approaches for autonomous vehicles, specifically for marine autonomous systems. The underlying idea is that the characterization of most environmental features can be posed from either a boundary tracking or a source seeking perspective. The suboptimal sliding mode boundary tracking approach is considered and, as a first contribution, it is extended to the study of three dimensional features. The approach is aimed at controlling the movement of an underwater glider tracking a three-dimensional underwater feature and it is validated in a simulated environment. Subsequently, a source seeking approach based on sliding mode extremum seeking ideas is proposed. This approach is developed for the application to a single surface autonomous vehicle, seeking the source of a static or dynamic two dimensional spatial field. A sufficient condition which guarantees the finite time convergence to a neighbourhood of the source is introduced. Furthermore, a probabilistic learning boundary tracking approach is proposed, aimed at exploiting the available preliminary information relating to the spatial phenomenon of interest in the control strategy. As an additional contribution, the sliding mode boundary tracking approach is experimentally validated in a set of sea-trials with the deployment of a surface autonomous vehicle. Finally, an embedded system implementing the proposed boundary tracking strategy is developed for future installation on board of the autonomous vehicle. This work demonstrates the possibility to perform boundary tracking with a fully autonomous vehicle and to operate marine autonomous systems without remote control or pre-planning. Conclusions are drawn from the results of the research presented in this thesis and directions for future work are identified
    • …
    corecore