89 research outputs found

    Deformable Multisurface Segmentation of the Spine for Orthopedic Surgery Planning and Simulation

    Get PDF
    Purpose: We describe a shape-aware multisurface simplex deformable model for the segmentation of healthy as well as pathological lumbar spine in medical image data. Approach: This model provides an accurate and robust segmentation scheme for the identification of intervertebral disc pathologies to enable the minimally supervised planning and patient-specific simulation of spine surgery, in a manner that combines multisurface and shape statistics-based variants of the deformable simplex model. Statistical shape variation within the dataset has been captured by application of principal component analysis and incorporated during the segmentation process to refine results. In the case where shape statistics hinder detection of the pathological region, user assistance is allowed to disable the prior shape influence during deformation. Results: Results demonstrate validation against user-assisted expert segmentation, showing excellent boundary agreement and prevention of spatial overlap between neighboring surfaces. This section also plots the characteristics of the statistical shape model, such as compactness, generalizability and specificity, as a function of the number of modes used to represent the family of shapes. Final results demonstrate a proof-of-concept deformation application based on the open-source surgery simulation Simulation Open Framework Architecture toolkit. Conclusions: To summarize, we present a deformable multisurface model that embeds a shape statistics force, with applications to surgery planning and simulation

    Extracting complex lesion phenotypes in

    Get PDF

    Hierarchical Image Segmentation using The Watershed Algorithim with A Streaming Implementation

    Get PDF
    We have implemented a graphical user interface (GUI) based semi-automatic hierarchical segmentation scheme, which works in three stages. In the first stage, we process the original image by filtering and threshold the gradient to reduce the level of noise. In the second stage, we compute the watershed segmentation of the image using the rainfalling simulation approach. In the third stage, we apply two region merging schemes, namely implicit region merging and seeded region merging, to the result of the watershed algorithm. Both the region merging schemes are based on the watershed depth of regions and serve to reduce the over segmentation produced by the watershed algorithm. Implicit region merging automatically produces a hierarchy of regions. In seeded region merging, a selected seed region can be grown from the watershed result, producing a hierarchy. A meaningful segmentation can be simply chosen from the hierarchy produced. We have also proposed and tested a streaming algorithm based on the watershed algorithm, which computes the segmentation of an image without iterative processing of adjacent blocks. We have proved that the streaming algorithm produces the same result as the serial watershed algorithm. We have also discussed the extensibility of the streaming algorithm to efficient parallel implementations

    Scene Segmentation in the Framework of Active Perception

    Get PDF
    It has been widely acknowledged in the Machine Perception community that the Scene Segmentation problem is ill defined, and hence difficult! To make our primitives adequately explain our data, we perform feedback on processed sensory data to explore the scene. This is Active Perception, the modeling and control strategies for perception

    Multiresolution co-clustering for uncalibrated multiview segmentation

    Get PDF
    We propose a technique for coherently co-clustering uncalibrated views of a scene with a contour-based representation. Our work extends the previous framework, an iterative algorithm for segmenting sequences with small variations, where the partition solution space is too restrictive for scenarios where consecutive images present larger variations. To deal with a more flexible scenario, we present three main contributions. First, motion information has been considered both for region adjacency and region similarity. Second, a two-step iterative architecture is proposed to increase the partition solution space. Third, a feasible global optimization that allows to jointly process all the views has been implemented. In addition to the previous contributions, which are based on low-level features, we have also considered introducing higher level features as semantic information in the co-clustering algorithm. We evaluate these techniques on multiview and temporal datasets, showing that they outperform state-of-the-art approaches.Peer ReviewedPostprint (author's final draft

    Supervised and unsupervised segmentation of textured images by efficient multi-level pattern classification

    Get PDF
    This thesis proposes new, efficient methodologies for supervised and unsupervised image segmentation based on texture information. For the supervised case, a technique for pixel classification based on a multi-level strategy that iteratively refines the resulting segmentation is proposed. This strategy utilizes pattern recognition methods based on prototypes (determined by clustering algorithms) and support vector machines. In order to obtain the best performance, an algorithm for automatic parameter selection and methods to reduce the computational cost associated with the segmentation process are also included. For the unsupervised case, the previous methodology is adapted by means of an initial pattern discovery stage, which allows transforming the original unsupervised problem into a supervised one. Several sets of experiments considering a wide variety of images are carried out in order to validate the developed techniques.Esta tesis propone metodologías nuevas y eficientes para segmentar imágenes a partir de información de textura en entornos supervisados y no supervisados. Para el caso supervisado, se propone una técnica basada en una estrategia de clasificación de píxeles multinivel que refina la segmentación resultante de forma iterativa. Dicha estrategia utiliza métodos de reconocimiento de patrones basados en prototipos (determinados mediante algoritmos de agrupamiento) y máquinas de vectores de soporte. Con el objetivo de obtener el mejor rendimiento, se incluyen además un algoritmo para selección automática de parámetros y métodos para reducir el coste computacional asociado al proceso de segmentación. Para el caso no supervisado, se propone una adaptación de la metodología anterior mediante una etapa inicial de descubrimiento de patrones que permite transformar el problema no supervisado en supervisado. Las técnicas desarrolladas en esta tesis se validan mediante diversos experimentos considerando una gran variedad de imágenes

    IMPROVING EFFICIENCY AND SCALABILITY IN VISUAL SURVEILLANCE APPLICATIONS

    Get PDF
    We present four contributions to visual surveillance: (a) an action recognition method based on the characteristics of human motion in image space; (b) a study of the strengths of five regression techniques for monocular pose estimation that highlights the advantages of kernel PLS; (c) a learning-based method for detecting objects carried by humans requiring minimal annotation; (d) an interactive video segmentation system that reduces supervision by using occlusion and long term spatio-temporal structure information. We propose a representation for human actions that is based solely on motion information and that leverages the characteristics of human movement in the image space. The representation is best suited to visual surveillance settings in which the actions of interest are highly constrained, but also works on more general problems if the actions are ballistic in nature. Our computationally efficient representation achieves good recognition performance on both a commonly used action recognition dataset and on a dataset we collected to simulate a checkout counter. We study discriminative methods for 3D human pose estimation from single images, which build a map from image features to pose. The main difficulty with these methods is the insufficiency of training data due to the high dimensionality of the pose space. However, real datasets can be augmented with data from character animation software, so the scalability of existing approaches becomes important. We argue that Kernel Partial Least Squares approximates Gaussian Process regression robustly, enabling the use of larger datasets, and we show in experiments that kPLS outperforms two state-of-the-art methods based on GP. The high variability in the appearance of carried objects suggests using their relation to the human silhouette to detect them. We adopt a generate-and-test approach that produces candidate regions from protrusion, color contrast and occlusion boundary cues and then filters them with a kernel SVM classifier on context features. Our method exceeds state of the art accuracy and has good generalization capability. We also propose a Multiple Instance Learning framework for the classifier that reduces annotation effort by two orders of magnitude while maintaining comparable accuracy. Finally, we present an interactive video segmentation system that trades off a small amount of segmentation quality for significantly less supervision than necessary in systems in the literature. While applications like video editing could not directly use the output of our system, reasoning about the trajectories of objects in a scene or learning coarse appearance models is still possible. The unsupervised segmentation component at the base of our system effectively employs occlusion boundary cues and achieves competitive results on an unsupervised segmentation dataset. On videos used to evaluate interactive methods, our system requires less interaction time than others, does not rely on appearance information and can extract multiple objects at the same time

    Multiscale combinatorial grouping

    Get PDF
    We propose a unified approach for bottom-up hierarchical image segmentation and object candidate generation for recognition, called Multiscale Combinatorial Grouping (MCG). For this purpose, we first develop a fast normalized cuts algorithm. We then propose a high-performance hierarchical segmenter that makes effective use of multiscale information. Finally, we propose a grouping strategy that combines our multiscale regions into highly-accurate object candidates by exploring efficiently their combinatorial space. We conduct extensive experiments on both the BSDS500 and on the PASCAL 2012 segmentation datasets, showing that MCG produces state-of-the-art contours, hierarchical regions and object candidates. 1
    corecore