17 research outputs found

    Filter Bank Fusion Frames

    Get PDF
    In this paper we characterize and construct novel oversampled filter banks implementing fusion frames. A fusion frame is a sequence of orthogonal projection operators whose sum can be inverted in a numerically stable way. When properly designed, fusion frames can provide redundant encodings of signals which are optimally robust against certain types of noise and erasures. However, up to this point, few implementable constructions of such frames were known; we show how to construct them using oversampled filter banks. In this work, we first provide polyphase domain characterizations of filter bank fusion frames. We then use these characterizations to construct filter bank fusion frame versions of discrete wavelet and Gabor transforms, emphasizing those specific finite impulse response filters whose frequency responses are well-behaved.Comment: keywords: filter banks, frames, tight, fusion, erasures, polyphas

    Message-Passing Estimation from Quantized Samples

    Full text link
    Estimation of a vector from quantized linear measurements is a common problem for which simple linear techniques are suboptimal -- sometimes greatly so. This paper develops generalized approximate message passing (GAMP) algorithms for minimum mean-squared error estimation of a random vector from quantized linear measurements, notably allowing the linear expansion to be overcomplete or undercomplete and the scalar quantization to be regular or non-regular. GAMP is a recently-developed class of algorithms that uses Gaussian approximations in belief propagation and allows arbitrary separable input and output channels. Scalar quantization of measurements is incorporated into the output channel formalism, leading to the first tractable and effective method for high-dimensional estimation problems involving non-regular scalar quantization. Non-regular quantization is empirically demonstrated to greatly improve rate-distortion performance in some problems with oversampling or with undersampling combined with a sparsity-inducing prior. Under the assumption of a Gaussian measurement matrix with i.i.d. entries, the asymptotic error performance of GAMP can be accurately predicted and tracked through the state evolution formalism. We additionally use state evolution to design MSE-optimal scalar quantizers for GAMP signal reconstruction and empirically demonstrate the superior error performance of the resulting quantizers.Comment: 12 pages, 8 figure

    Frame Theory for Signal Processing in Psychoacoustics

    Full text link
    This review chapter aims to strengthen the link between frame theory and signal processing tasks in psychoacoustics. On the one side, the basic concepts of frame theory are presented and some proofs are provided to explain those concepts in some detail. The goal is to reveal to hearing scientists how this mathematical theory could be relevant for their research. In particular, we focus on frame theory in a filter bank approach, which is probably the most relevant view-point for audio signal processing. On the other side, basic psychoacoustic concepts are presented to stimulate mathematicians to apply their knowledge in this field

    Generic Invertibility of Multidimensional FIR Filter Banks and MIMO Systems

    Get PDF
    We study the invertibility of M-variate Laurent polynomial N × P matrices. Such matrices represent multidimensional systems in various settings such as filter banks, multiple-input multiple-output systems, and multirate systems. Given an N × P Laurent polynomial matrix H(z1,..., zM) of degree at most k, we want to find a P × N Laurent polynomial left inverse matrix G(z) of H(z) such that G(z)H(z) = I. We provide computable conditions to test the invertibility and propose algorithms to find a particular inverse. The main result of this paper is to prove that H(z) is generically invertible when N −P ≥ M; whereas when N −P < M, then H(z) is generically noninvertible. As a result, we propose an algorithm to find a particular inverse of a Laurent polynomial matrix that is faster than current algorithms known to us

    Anthropomorphic Coding of Speech and Audio: A Model Inversion Approach

    Get PDF
    Auditory modeling is a well-established methodology that provides insight into human perception and that facilitates the extraction of signal features that are most relevant to the listener. The aim of this paper is to provide a tutorial on perceptual speech and audio coding using an invertible auditory model. In this approach, the audio signal is converted into an auditory representation using an invertible auditory model. The auditory representation is quantized and coded. Upon decoding, it is then transformed back into the acoustic domain. This transformation converts a complex distortion criterion into a simple one, thus facilitating quantization with low complexity. We briefly review past work on auditory models and describe in more detail the components of our invertible model and its inversion procedure, that is, the method to reconstruct the signal from the output of the auditory model. We summarize attempts to use the auditory representation for low-bit-rate coding. Our approach also allows the exploitation of the inherent redundancy of the human auditory system for the purpose of multiple description (joint source-channel) coding
    corecore