2,192 research outputs found

    QoS-Based Optimization of Runtime Management of Sensing Cloud Applications

    Get PDF
    Die vorliegende Arbeit präsentiert Ansätze und Techniken zur qualitätsbewussten Verbesserung des Laufzeitmanagements von IoT-Anwendungen. IoT-Anwendungen nehmen über die Sensorik von Smart Devices ihre Umgebung wahr, um diese zu analysieren oder mit ihr zu interagieren. Smart Devices sind in der Rechen- und Speicherleistung begrenzt, weshalb viele IoT-Anwendungen über eine IoT Plattform mit elastischen und skalierbaren Cloud Services verbunden sind. Die Last auf dem Cloud Service entsteht durch die verbundenen Smart Devices, die kontinuierlich Nachrichten transferieren. Die Ressourcenkonfiguration des Cloud Services beeinflusst dessen Kapazität. Ein Service Operator, der eine IoT-Anwendung betreibt, ist mit der Herausforderung konfrontiert, die Smart Devices und den Cloud Service so zu konfigurieren, dass eine hohe Datenqualität bei niedrigen Betriebskosten erreicht wird. Um hierbei den Service Operator zur Design Time zu unterstützen, modellieren wir Kostenfunktionen für Datenqualitäten, die durch das Wechselspiel der Smart Device- und Cloud Service-Konfiguration beeinflusst werden. Mit Hilfe dieser Kostenfunktionen kann ein Service Operator nach einer kostenminimalen Konfiguration für bestimmte Szenarien suchen. Existierende Ansätze zur Optimierung von Anwendungen zur Design Time fokussieren sich auf traditionelle Software-Architekturen und bieten daher nicht die notwendigen Konzepte zur Kostenmodellierung von IoT-Anwendungen an. Des Weiteren unterstützen wir den Service Operator durch Lastkontrollverfahren, die auf Kapazitätsengpässe des Cloud Services durch eine kontrollierte Reduktion der Nachrichtenrate reagieren. Während sich das auf die Genauigkeit der Messungen nachteilig auswirken kann, stabilisieren sich zeitliche Verzögerungen und die IoT-Anwendung bleibt auch in starken Überlastszenarien verfügbar. Existierende Laufzeittechniken fokussieren sich auf die automatische Ressourcenprovisionierung von Cloud Services durch Auto-Scaler. Diese ermöglichen zwar, auf Kapazitätsengpässe und Lastschwankungen zu reagieren, doch die erreichte Quality-of-Service (QoS) kann dadurch mit hohen Betriebskosten verbunden sein. Daher ermöglichen wir durch die Lastkontrollverfahren eine weitere Technik, mit der einerseits dynamisch auf Kapazitätsengpässe reagiert werden und andererseits die zur Verfügung stehende Kapazität eines Cloud Services effizient genutzt werden kann. Außerdem präsentieren wir Kopplungstechniken, die Auto-Scaling und Lastkontrollverfahren kombinieren. Bestehende Ansätze zur Rekonfiguration von Smart Devices konzentrieren sich auf Qualitäten wie Genauigkeit oder Energie-Effizienz und sind daher ungeeignet, um auf Kapazitätsengpässe zu reagieren. Zusammenfassend liefert die Dissertation die folgenden Beiträge: 1. Untersuchung von Performance Metriken für Skalierentscheidungen: Wir haben Infrastuktur- und Anwendungsebenen-Metriken daraufhin evaluiert, wie geeignet sie für Skalierentscheidungen von Microservices sind, die variierende Charakteristiken aufweisen. Auf Basis der Ergebnisse kann ein Service Operator eine fundierte Entscheidung darüber treffen, welche Performance Metrik zur Skalierung eines bestimmten Microservices am geeignesten ist. 2. Design von QoS Kostenfunktionen für IoT-Anwendungen: Wir haben ein QoS Kostenmodell aufgestellt, dass das Wirken von Smart Device- und Cloud Service-Konfiguration auf die Qualitäten einer IoT-Anwendung erfasst. Auf Grundlage dieser Kostenmodelle kann die Konfiguration von IoT-Anwendungen zur Design Time optimiert werden. Des Weiteren können mit den Kostenfunktionen Laufzeitverfahren hinsichtlich ihrem Beitrag zur QoS für verschiedene Szenarien evaluiert werden. 3. Entwicklung von Lastkontrollverfahren für IoT-Anwendungen: Die präsentierten Verfahren bieten einen komplementären Mechanismus zu Auto-Scaling an, um bei Kapazitätsengpässen die QoS aufrechtzuerhalten. Hierbei wird die Gesamtlast auf dem Cloud Service durch Anpassungen der Nachrichtenrate der Smart Devices reduziert. Ein Service Operator hat hiermit die Möglichkeit, Kapazitätsengpässen über eine Degradierung der Datenqualität zu begegnen. 4. Kopplung von Lastkontrollverfahren mit Ressourcen-Provisionierung: Wir präsentieren regelbasierte Kopplungsmechanismen, die reaktiv Lastkontrollverfahren oder Auto-Scaler aktivieren und diese damit koppeln. Das ermöglicht, auf Kapazitätsengpässe über eine Kombination von Datenqualitätsreduzierungen und Ressourcekostenerhöhungen zu reagieren. 5. Design eines Frameworks zur Entwicklung selbst-adaptiver Systeme: Das selbst-adaptive Framework bietet ein Anwendungsmodell für IoT-Anwendungen und Konzepte für die Rekonfiguration von Microservices und Smart Devices an. Es kann in verschiedenen Cloud-Umgebungen aufgesetzt werden und beschleunigt die prototypische Entwicklung von Laufzeitverfahren. Wir validierten die Ansätze anhand zweier Case Study Systeme unterschiedlicher Komplexität. Das erste Case Study System besteht aus einem Cloud Service, welcher über eine IoT Plattform Nachrichten von virtuellen Smart Devices verarbeitet. Mit diesem System haben wir für unterschiedliche Anwendungsszenarien die Charakteristiken der vorgestellten Lastkontrollverfahren analysiert, um diese gegen Auto-Scaling und einer Kopplung der Ansätze zu vergleichen. Hierbei stellte sich heraus, dass die Lastkontrollverfahren ähnlich effizient wie Auto-Scaler Überlastszenarien addressieren können und sich die QoS in einem vergleichbaren Bereich bewegt. Im Schnitt erreichten die Lastkontrollverfahren in den untersuchten Szenarien etwa 50 % geringere QoS Gesamtkosten. Es zeigte sich auch, dass sowohl Auto-Scaling als auch die Lastkontrollverfahren in bestimmten Anwendungsszenarien deutliche Nachteile haben, so z. B. wenn die Datengenauigkeit oder Ressourcenkosten im Vordergrund stehen. Es hat sich gezeigt, dass eine Kopplung hierbei immer vorteilhaft ist, um die QoS beizubehalten. Im zweiten Case Study System haben wir eine intelligente Heizungslösung der Robert Bosch GmbH implementiert, um die Ansätze an einem komplexeren System zu validieren. Auch hier zeigte sich, dass eine Kombination von Lastkontrolle und Auto-Scaling am vorteilhaftesten ist und zu einer hohen Datenqualität bei geringen Ressourcenkosten beiträgt. Die Ergebnisse zeigen, dass die vorgestellten Lastkontrollverfahren geeignet sind, die QoS von IoT Anwendungen zu verbessern. Es bietet einem Service Operator damit ein weiteres Werkzeug für das Laufzeitmanagement von IoT Anwendungen, dass einen zum Auto-Scaling komplementären Mechanismus verwendet. Das hier vorgestellte Framework zur Entwicklung selbst-adaptiver IoT Systeme haben wir zur empirischen Beantwortung der Forschungsfragen instanziiert und damit dessen Eignung demonstriert. Wir zeigen außerdem eine exemplarische Verwendung der vorgestellten Kostenfunktionen für verschiedene Anwendungsszenarien und binden diese im Zuge der Validierung in einem Optimierungs-Framework ein

    Towards Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions

    Get PDF
    The ever-increasing number of resource-constrained Machine-Type Communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as eMBB, mMTC and URLLC, mMTC brings the unique technical challenge of supporting a huge number of MTC devices, which is the main focus of this paper. The related challenges include QoS provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead and Radio Access Network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy Random Access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and NB-IoT. Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions towards addressing RAN congestion problem, and then identify potential advantages, challenges and use cases for the applications of emerging Machine Learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity Q-learning approach in the mMTC scenarios. Finally, we discuss some open research challenges and promising future research directions.Comment: 37 pages, 8 figures, 7 tables, submitted for a possible future publication in IEEE Communications Surveys and Tutorial

    The Internet-of-Things Meets Business Process Management: Mutual Benefits and Challenges

    Get PDF
    The Internet of Things (IoT) refers to a network of connected devices collecting and exchanging data over the Internet. These things can be artificial or natural, and interact as autonomous agents forming a complex system. In turn, Business Process Management (BPM) was established to analyze, discover, design, implement, execute, monitor and evolve collaborative business processes within and across organizations. While the IoT and BPM have been regarded as separate topics in research and practice, we strongly believe that the management of IoT applications will strongly benefit from BPM concepts, methods and technologies on the one hand; on the other one, the IoT poses challenges that will require enhancements and extensions of the current state-of-the-art in the BPM field. In this paper, we question to what extent these two paradigms can be combined and we discuss the emerging challenges

    ENABLING ATTRIBUTE BASED ACCESS CONTROL WITHIN THE INTERNET OF THINGS (IOT)

    Get PDF
    With the wide-scale development of the Internet of Things (IoT) and the usage of low-powered devices (sensors) together with smart devices, numerous people are using IoT systems in their homes and businesses to have more control over their technology. Unfortunately, some users of IoT systems that are controlled by a mobile application do not have a high level of data protection to respond in case the device is lost, stolen, or used by one of the owner’s friends or family members. The problem studied in this research is how to apply one of access control methods an IoT system whether they are stored locally on a sensor or on a cloud. To solve the problem, an attribute-based access control (ABAC) mechanism is applied to give the system the ability to apply policies to detect any unauthorized entry by evaluating some of the users’ attributes: the accessed time, the device media access control address (MAC address), the username, and password. Finally, a prototype was built to test the proposed solution in two ways; one is locally on a low-powered device, the second using cloud platform for the data storage. To evaluate both the prototype implementation, this research had an evaluation plan to mimic the real-world interactions by obtaining the response times when different numbers of requests sent from diverse numbers of users in different delays. The evaluation results showed that the first implementation was noticeably faster than the second implementation

    Data Analytics and Performance Enhancement in Edge-Cloud Collaborative Internet of Things Systems

    Get PDF
    Based on the evolving communications, computing and embedded systems technologies, Internet of Things (IoT) systems can interconnect not only physical users and devices but also virtual services and objects, which have already been applied to many different application scenarios, such as smart home, smart healthcare, and intelligent transportation. With the rapid development, the number of involving devices increases tremendously. The huge number of devices and correspondingly generated data bring critical challenges to the IoT systems. To enhance the overall performance, this thesis aims to address the related technical issues on IoT data processing and physical topology discovery of the subnets self-organized by IoT devices. First of all, the issues on outlier detection and data aggregation are addressed through the development of recursive principal component analysis (R-PCA) based data analysis framework. The framework is developed in a cluster-based structure to fully exploit the spatial correlation of IoT data. Specifically, the sensing devices are gathered into clusters based on spatial data correlation. Edge devices are assigned to the clusters for the R-PCA based outlier detection and data aggregation. The outlier-free and aggregated data are forwarded to the remote cloud server for data reconstruction and storage. Moreover, a data reduction scheme is further proposed to relieve the burden on the trunk link for data uploading by utilizing the temporal data correlation. Kalman filters (KFs) with identical parameters are maintained at the edge and cloud for data prediction. The amount of data uploading is reduced by using the data predicted by the KF in the cloud instead of uploading all the practically measured data. Furthermore, an unmanned aerial vehicle (UAV) assisted IoT system is particularly designed for large-scale monitoring. Wireless sensor nodes are flexibly deployed for environmental sensing and self-organized into wireless sensor networks (WSNs). A physical topology discovery scheme is proposed to construct the physical topology of WSNs in the cloud server to facilitate performance optimization, where the physical topology indicates both the logical connectivity statuses of WSNs and the physical locations of WSN nodes. The physical topology discovery scheme is implemented through the newly developed parallel Metropolis-Hastings random walk based information sampling and network-wide 3D localization algorithms, where UAVs are served as the mobile edge devices and anchor nodes. Based on the physical topology constructed in the cloud, a UAV-enabled spatial data sampling scheme is further proposed to efficiently sample data from the monitoring area by using denoising autoencoder (DAE). By deploying the encoder of DAE at the UAV and decoder in the cloud, the data can be partially sampled from the sensing field and accurately reconstructed in the cloud. In the final part of the thesis, a novel autoencoder (AE) neural network based data outlier detection algorithm is proposed, where both encoder and decoder of AE are deployed at the edge devices. Data outliers can be accurately detected by the large fluctuations in the squared error generated by the data passing through the encoder and decoder of the AE

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A

    Risks associated with Logistics 4.0 and their minimization using Blockchain

    Get PDF
    Currently we are saying that we are at the dawn of the fourth revolution, which is marked by using cyber-physical systems and the Internet of Things. This is marked as Industry 4.0 (I4.0). With Industry 4.0 is also closely linked concept Logistics 4.0. The highly dynamic and uncertain logistic markets and huge logistic networks require new methods, products and services. The concept of the Internet of Things and Services (IoT&S), Big Data/Data Mining (DM), cloud computing, 3D printing, Blockchain and cyber physical system (CPS) etc. seem to be the probable technical solution for that. However, associated risks hamper its implementation and lack a comprehensive overview. In response, the paper proposes a framework of risks in the context of Logistics 4.0. They are here economic risks, that are associated e.g. with high or false investments. From a social perspective, risks the job losses, are considered too. Additionally, risks can be associated with technical risks, e.g. technical integration, information technology (IT)-related risks such as data security, and legal and political risks, such as for instance unsolved legal clarity in terms of data possession. It is therefore necessary to know the potential risks in the implementation process.Web of Science101857

    Cybersecurity in Power Grids: Challenges and Opportunities

    Get PDF
    Increasing volatilities within power transmission and distribution force power grid operators to amplify their use of communication infrastructure to monitor and control their grid. The resulting increase in communication creates a larger attack surface for malicious actors. Indeed, cyber attacks on power grids have already succeeded in causing temporary, large-scale blackouts in the recent past. In this paper, we analyze the communication infrastructure of power grids to derive resulting fundamental challenges of power grids with respect to cybersecurity. Based on these challenges, we identify a broad set of resulting attack vectors and attack scenarios that threaten the security of power grids. To address these challenges, we propose to rely on a defense-in-depth strategy, which encompasses measures for (i) device and application security, (ii) network security, and (iii) physical security, as well as (iv) policies, procedures, and awareness. For each of these categories, we distill and discuss a comprehensive set of state-of-the art approaches, as well as identify further opportunities to strengthen cybersecurity in interconnected power grids
    corecore