559 research outputs found

    Overlay Addressing and Routing System Based on Hyperbolic Geometry

    Get PDF
    International audienceLocal knowledge routing schemes based on virtual coordinates taken from the hyperbolic plane have attracted considerable interest in recent years. In this paper, we propose a new approach for seizing the power of the hyperbolic geometry. We aim at building a scalable and reliable system for creating and managing overlay networks over the Internet. The system is implemented as a peer-to-peer infrastructure based on the transport layer connections between the peers. Through analysis, we show the limitations of the Poincaré disk model for providing virtual coordinates. Through simulations, we assess the practicability of our proposal. Results show that peer-to-peer overlays based on hyperbolic geometry have acceptable performances while introducing scalability and flexibility in dynamic peer-to-peer overlay networks

    Scalable Routing Easy as PIE: a Practical Isometric Embedding Protocol (Technical Report)

    Get PDF
    We present PIE, a scalable routing scheme that achieves 100% packet delivery and low path stretch. It is easy to implement in a distributed fashion and works well when costs are associated to links. Scalability is achieved by using virtual coordinates in a space of concise dimensionality, which enables greedy routing based only on local knowledge. PIE is a general routing scheme, meaning that it works on any graph. We focus however on the Internet, where routing scalability is an urgent concern. We show analytically and by using simulation that the scheme scales extremely well on Internet-like graphs. In addition, its geometric nature allows it to react efficiently to topological changes or failures by finding new paths in the network at no cost, yielding better delivery ratios than standard algorithms. The proposed routing scheme needs an amount of memory polylogarithmic in the size of the network and requires only local communication between the nodes. Although each node constructs its coordinates and routes packets locally, the path stretch remains extremely low, even lower than for centralized or less scalable state-of-the-art algorithms: PIE always finds short paths and often enough finds the shortest paths.Comment: This work has been previously published in IEEE ICNP'11. The present document contains an additional optional mechanism, presented in Section III-D, to further improve performance by using route asymmetry. It also contains new simulation result

    MUSeS: Mobile User Secured Session

    Get PDF
    International audienceMobility and security are very important services for both current and future network infrastructures. However, the integration of mobility in traditional virtual private networks is difficult due to the costs of re-establishing broken secure tunnels and restarting broken application connections. In order to address this issue, we propose a new communication system called Mobile User Secured Session. Based upon a peer-to-peer overlay network, it provides security services to the application layer connections of mobile users. The secure and resilient sessions allow user connections to survive network failures as opposed to regular transport layer secured connections. We have implemented a prototype and have assessed its proper functioning by running experimentations upon a simple virtual dynamic network

    Measuring Effectiveness of Address Schemes for AS-level Graphs

    Get PDF
    This dissertation presents measures of efficiency and locality for Internet addressing schemes. Historically speaking, many issues, faced by the Internet, have been solved just in time, to make the Internet just work~\cite{justWork}. Consensus, however, has been reached that today\u27s Internet routing and addressing system is facing serious scaling problems: multi-homing which causes finer granularity of routing policies and finer control to realize various traffic engineering requirements, an increased demand for provider-independent prefix allocations which injects unaggregatable prefixes into the Default Free Zone (DFZ) routing table, and ever-increasing Internet user population and mobile edge devices. As a result, the DFZ routing table is again growing at an exponential rate. Hierarchical, topology-based addressing has long been considered crucial to routing and forwarding scalability. Recently, however, a number of research efforts are considering alternatives to this traditional approach. With the goal of informing such research, we investigated the efficiency of address assignment in the existing (IPv4) Internet. In particular, we ask the question: ``how can we measure the locality of an address scheme given an input AS-level graph?\u27\u27 To do so, we first define a notion of efficiency or locality based on the average number of bit-hops required to advertize all prefixes in the Internet. In order to quantify how far from ``optimal the current Internet is, we assign prefixes to ASes ``from scratch in a manner that preserves observed semantics, using three increasingly strict definitions of equivalence. Next we propose another metric that in some sense quantifies the ``efficiency of the labeling and is independent of forwarding/routing mechanisms. We validate the effectiveness of the metric by applying it to a series of address schemes with increasing randomness given an input AS-level graph. After that we apply the metric to the current Internet address scheme across years and compare the results with those of compact routing schemes

    Towards content-centric geometric routing

    Get PDF
    Content delivery is a crucial feature of existing cloud and telecom networks. This is confirmed by the tremendous success of media streaming services such as Spotify and Netftix, as well as the content and file-distribution systems such as BitTorrent. A recurring problem in these type of network services is about keeping the protocol overhead as low as possible while maximizing the efficiency of such systems in terms of network delay to customers. In this paper we propose the use of a routing system-inferred coordinate system to improve: i) content server selection upon receiving content requests, and ii) the mapping of content to servers/caches. We describe the required protocol mechanisms, and evaluate potential gains using coordinates of Geometric Tree Routing and compare it to pure IP-based mechanisms or measurement-based content systems relying on coordinates. The proposed approach can be further extended in order to include alternate geometric systems for example supporting hyperbolic geometries

    Resilient scalable internet routing and embedding algorithms

    Get PDF

    Graph embeddings for low-stretch greedy routing

    Full text link
    The simplest greedy geometric routing forwards packets to make most progress in terms of geometric distance within reach. Its notable advantages are low complexity, and the use of local information only. However, two problems of greedy routing are that delivery is not always guaranteed, and that the greedy routes may take more hops than the corresponding shortest paths. Additionally, in dynamic multihop networks, routing elements can join or leave during network operation or exhibit intermittent failures. Even a single link or node removal may invalidate the greedy routing success guarantees. Greedy embedding is a graph embedding that makes the simple greedy packet forwarding successful for every source-destination pair. In this dissertation, we consider the problems of designing greedy graph embeddings that also yield low hop stretch of the greedy paths over the shortest paths and can accommodate network dynamics. In the first part of the dissertation, we consider embedding and routing for arbitrary unweighted network graphs, based on greedy routing and utilizing virtual node coordinates. We propose an algorithm for online greedy graph embedding in the hyperbolic plane that enables incremental embedding of network nodes as they join the network, without disturbing the global embedding. As an alternative to frequent reembedding of temporally dynamic network graphs in order to retain the greedy embedding property, we propose a simple but robust generalization of greedy geometric routing called Gravity--Pressure (GP) routing. Our routing method always succeeds in finding a route to the destination provided that a path exists, even if a significant fraction of links or nodes is removed subsequent to the embedding. GP routing does not require precomputation or maintenance of special spanning subgraphs and is particularly suitable for operation in tandem with our proposed algorithm for online graph embedding. In the second part of the dissertation we study how topological and geometric properties of embedded graphs influence the hop stretch. Based on the obtained insights, we synthesize embedding heuristics that yield minimal hop stretch greedy embeddings. Finally, we verify their effectiveness on models of synthetic graphs as well as instances of several classes of real-world network graphs

    Using Internet Geometry to Improve End-to-End Communication Performance

    Get PDF
    The Internet has been designed as a best-effort communication medium between its users, providing connectivity but optimizing little else. It does not guarantee good paths between two users: packets may take longer or more congested routes than necessary, they may be delayed by slow reaction to failures, there may even be no path between users. To obtain better paths, users can form routing overlay networks, which improve the performance of packet delivery by forwarding packets along links in self-constructed graphs. Routing overlays delegate the task of selecting paths to users, who can choose among a diversity of routes which are more reliable, less loaded, shorter or have higher bandwidth than those chosen by the underlying infrastructure. Although they offer improved communication performance, existing routing overlay networks are neither scalable nor fair: the cost of measuring and computing path performance metrics between participants is high (which limits the number of participants) and they lack robustness to misbehavior and selfishness (which could discourage the participation of nodes that are more likely to offer than to receive service). In this dissertation, I focus on finding low-latency paths using routing overlay networks. I support the following thesis: it is possible to make end-to-end communication between Internet users simultaneously faster, scalable, and fair, by relying solely on inherent properties of the Internet latency space. To prove this thesis, I take two complementary approaches. First, I perform an extensive measurement study in which I analyze, using real latency data sets, properties of the Internet latency space: the existence of triangle inequality violations (TIVs) (which expose detour paths: ''indirect'' one-hop paths that have lower round-trip latency than the ''direct'' default paths), the interaction between TIVs and network coordinate systems (which leads to scalable detour discovery), and the presence of mutual advantage (which makes fairness possible). Then, using the results of the measurement study, I design and build PeerWise, the first routing overlay network that reduces end-to-end latency between its participants and is both scalable and fair. I evaluate PeerWise using simulation and through a wide-area deployment on the PlanetLab testbed

    Scale-free networks and scalable interdomain routing

    Get PDF
    Trabalho apresentado no ùmbito do Mestrado em Engenharia Informåtica, como requisito parcial para obtenção do grau de Mestre em Engenharia InformåticaThe exponential growth of the Internet, due to its tremendous success, has brought to light some limitations of the current design at the routing and arquitectural level, such as scalability and convergence as well as the lack of support for traffic engineering, mobility, route differentiation and security. Some of these issues arise from the design of the current architecture, while others are caused by the interdomain routing scheme - BGP. Since it would be quite difficult to add support for the aforementioned issues, both in the interdomain architecture and in the in the routing scheme, various researchers believe that a solution can only achieved via a new architecture and (possibly) a new routing scheme. A new routing strategy has emerged from the studies regarding large-scale networks, which is suitable for a special type of large-scale networks which characteristics are independent of network size: scale-free networks. Using the greedy routing strategy a node routes a message to a given destination using only the information regarding the destination and its neighbours, choosing the one which is closest to the destination. This routing strategy ensures the following remarkable properties: routing state in the order of the number of neighbours; no requirements on nodes to exchange messages in order to perform routing; chosen paths are the shortest ones. This dissertation aims at: studying the aforementioned problems, studying the Internet configuration as a scale-free network, and defining a preliminary path onto the definition of a greedy routing scheme for interdomain routing

    Routing at Large Scale: Advances and Challenges for Complex Networks

    Get PDF
    International audienceA wide range of social, technological and communication systems can be described as complex networks. Scale-free networks are one of the well-known classes of complex networks in which nodes degree follow a power-law distribution. The design of scalable, adaptive and resilient routing schemes in such networks is very challenging. In this article we present an overview of required routing functionality, categorize the potential design dimensions of routing protocols among existing routing schemes and analyze experimental results and analytical studies performed so far to identify the main trends/trade-offs and draw main conclusions. Besides traditional schemes such as hierarchical/shortest-path path-vector routing, the article pays attention to advances in compact routing and geometric routing since they are known to significantly improve the scalability in terms of memory space. The identified trade-offs and the outcomes of this overview enable more careful conclusions regarding the (in-)suitability of different routing schemes to large-scale complex networks and provide a guideline for future routing research
    • 

    corecore