42,567 research outputs found

    The Road Ahead for Networking: A Survey on ICN-IP Coexistence Solutions

    Full text link
    In recent years, the current Internet has experienced an unexpected paradigm shift in the usage model, which has pushed researchers towards the design of the Information-Centric Networking (ICN) paradigm as a possible replacement of the existing architecture. Even though both Academia and Industry have investigated the feasibility and effectiveness of ICN, achieving the complete replacement of the Internet Protocol (IP) is a challenging task. Some research groups have already addressed the coexistence by designing their own architectures, but none of those is the final solution to move towards the future Internet considering the unaltered state of the networking. To design such architecture, the research community needs now a comprehensive overview of the existing solutions that have so far addressed the coexistence. The purpose of this paper is to reach this goal by providing the first comprehensive survey and classification of the coexistence architectures according to their features (i.e., deployment approach, deployment scenarios, addressed coexistence requirements and architecture or technology used) and evaluation parameters (i.e., challenges emerging during the deployment and the runtime behaviour of an architecture). We believe that this paper will finally fill the gap required for moving towards the design of the final coexistence architecture.Comment: 23 pages, 16 figures, 3 table

    Taxonomy of P2P Applications

    Get PDF
    Peer-to-peer (p2p) networks have gained immense popularity in recent years and the number of services they provide continuously rises. Where p2p-networks were formerly known as file-sharing networks, p2p is now also used for services like VoIP and IPTV. With so many different p2p applications and services the need for a taxonomy framework rises. This paper describes the available p2p applications grouped by the services they provide. A taxonomy framework is proposed to classify old and recent p2p applications based on their characteristics

    A novel approach to quality-of-service provisioning in trusted relay Quantum Key Distribution networks

    Get PDF
    In recent years, noticeable progress has been made in the development of quantum equipment, reflected through the number of successful demonstrations of Quantum Key Distribution (QKD) technology. Although they showcase the great achievements of QKD, many practical difficulties still need to be resolved. Inspired by the significant similarity between mobile ad-hoc networks and QKD technology, we propose a novel quality of service (QoS) model including new metrics for determining the states of public and quantum channels as well as a comprehensive metric of the QKD link. We also propose a novel routing protocol to achieve high-level scalability and minimize consumption of cryptographic keys. Given the limited mobility of nodes in QKD networks, our routing protocol uses the geographical distance and calculated link states to determine the optimal route. It also benefits from a caching mechanism and detection of returning loops to provide effective forwarding while minimizing key consumption and achieving the desired utilization of network links. Simulation results are presented to demonstrate the validity and accuracy of the proposed solutions.Web of Science28118116

    NETEMBED: A Network Resource Mapping Service for Distributed Applications

    Full text link
    Emerging configurable infrastructures such as large-scale overlays and grids, distributed testbeds, and sensor networks comprise diverse sets of available computing resources (e.g., CPU and OS capabilities and memory constraints) and network conditions (e.g., link delay, bandwidth, loss rate, and jitter) whose characteristics are both complex and time-varying. At the same time, distributed applications to be deployed on these infrastructures exhibit increasingly complex constraints and requirements on resources they wish to utilize. Examples include selecting nodes and links to schedule an overlay multicast file transfer across the Grid, or embedding a network experiment with specific resource constraints in a distributed testbed such as PlanetLab. Thus, a common problem facing the efficient deployment of distributed applications on these infrastructures is that of "mapping" application-level requirements onto the network in such a manner that the requirements of the application are realized, assuming that the underlying characteristics of the network are known. We refer to this problem as the network embedding problem. In this paper, we propose a new approach to tackle this combinatorially-hard problem. Thanks to a number of heuristics, our approach greatly improves performance and scalability over previously existing techniques. It does so by pruning large portions of the search space without overlooking any valid embedding. We present a construction that allows a compact representation of candidate embeddings, which is maintained by carefully controlling the order via which candidate mappings are inserted and invalid mappings are removed. We present an implementation of our proposed technique, which we call NETEMBED – a service that identify feasible mappings of a virtual network configuration (the query network) to an existing real infrastructure or testbed (the hosting network). We present results of extensive performance evaluation experiments of NETEMBED using several combinations of real and synthetic network topologies. Our results show that our NETEMBED service is quite effective in identifying one (or all) possible embeddings for quite sizable queries and hosting networks – much larger than what any of the existing techniques or services are able to handle.National Science Foundation (CNS Cybertrust 0524477, NSF CNS NeTS 0520166, NSF CNS ITR 0205294, EIA RI 0202067
    corecore