52,482 research outputs found

    Adaptive community detection incorporating topology and content in social networks<sup>✰</sup>

    Full text link
    © 2018 In social network analysis, community detection is a basic step to understand the structure and function of networks. Some conventional community detection methods may have limited performance because they merely focus on the networks’ topological structure. Besides topology, content information is another significant aspect of social networks. Although some state-of-the-art methods started to combine these two aspects of information for the sake of the improvement of community partitioning, they often assume that topology and content carry similar information. In fact, for some examples of social networks, the hidden characteristics of content may unexpectedly mismatch with topology. To better cope with such situations, we introduce a novel community detection method under the framework of non-negative matrix factorization (NMF). Our proposed method integrates topology as well as content of networks and has an adaptive parameter (with two variations) to effectively control the contribution of content with respect to the identified mismatch degree. Based on the disjoint community partition result, we also introduce an additional overlapping community discovery algorithm, so that our new method can meet the application requirements of both disjoint and overlapping community detection. The case study using real social networks shows that our new method can simultaneously obtain the community structures and their corresponding semantic description, which is helpful to understand the semantics of communities. Related performance evaluations on both artificial and real networks further indicate that our method outperforms some state-of-the-art methods while exhibiting more robust behavior when the mismatch between topology and content is observed

    An Enhanced Multi-Objective Biogeography-Based Optimization Algorithm for Automatic Detection of Overlapping Communities in a Social Network with Node Attributes

    Full text link
    Community detection is one of the most important and interesting issues in social network analysis. In recent years, simultaneous considering of nodes' attributes and topological structures of social networks in the process of community detection has attracted the attentions of many scholars, and this consideration has been recently used in some community detection methods to increase their efficiencies and to enhance their performances in finding meaningful and relevant communities. But the problem is that most of these methods tend to find non-overlapping communities, while many real-world networks include communities that often overlap to some extent. In order to solve this problem, an evolutionary algorithm called MOBBO-OCD, which is based on multi-objective biogeography-based optimization (BBO), is proposed in this paper to automatically find overlapping communities in a social network with node attributes with synchronously considering the density of connections and the similarity of nodes' attributes in the network. In MOBBO-OCD, an extended locus-based adjacency representation called OLAR is introduced to encode and decode overlapping communities. Based on OLAR, a rank-based migration operator along with a novel two-phase mutation strategy and a new double-point crossover are used in the evolution process of MOBBO-OCD to effectively lead the population into the evolution path. In order to assess the performance of MOBBO-OCD, a new metric called alpha_SAEM is proposed in this paper, which is able to evaluate the goodness of both overlapping and non-overlapping partitions with considering the two aspects of node attributes and linkage structure. Quantitative evaluations reveal that MOBBO-OCD achieves favorable results which are quite superior to the results of 15 relevant community detection algorithms in the literature
    • …
    corecore