309 research outputs found

    Personalized retrieval of sports video

    Full text link

    Video summarisation: A conceptual framework and survey of the state of the art

    Get PDF
    This is the post-print (final draft post-refereeing) version of the article. Copyright @ 2007 Elsevier Inc.Video summaries provide condensed and succinct representations of the content of a video stream through a combination of still images, video segments, graphical representations and textual descriptors. This paper presents a conceptual framework for video summarisation derived from the research literature and used as a means for surveying the research literature. The framework distinguishes between video summarisation techniques (the methods used to process content from a source video stream to achieve a summarisation of that stream) and video summaries (outputs of video summarisation techniques). Video summarisation techniques are considered within three broad categories: internal (analyse information sourced directly from the video stream), external (analyse information not sourced directly from the video stream) and hybrid (analyse a combination of internal and external information). Video summaries are considered as a function of the type of content they are derived from (object, event, perception or feature based) and the functionality offered to the user for their consumption (interactive or static, personalised or generic). It is argued that video summarisation would benefit from greater incorporation of external information, particularly user based information that is unobtrusively sourced, in order to overcome longstanding challenges such as the semantic gap and providing video summaries that have greater relevance to individual users

    The TRECVID 2007 BBC rushes summarization evaluation pilot

    Get PDF
    This paper provides an overview of a pilot evaluation of video summaries using rushes from several BBC dramatic series. It was carried out under the auspices of TRECVID. Twenty-two research teams submitted video summaries of up to 4% duration, of 42 individual rushes video files aimed at compressing out redundant and insignificant material. The output of two baseline systems built on straightforward content reduction techniques was contributed by Carnegie Mellon University as a control. Procedures for developing ground truth lists of important segments from each video were developed at Dublin City University and applied to the BBC video. At NIST each summary was judged by three humans with respect to how much of the ground truth was included, how easy the summary was to understand, and how much repeated material the summary contained. Additional objective measures included: how long it took the system to create the summary, how long it took the assessor to judge it against the ground truth, and what the summary's duration was. Assessor agreement on finding desired segments averaged 78% and results indicate that while it is difficult to exceed the performance of baselines, a few systems did

    Soccer Video Event Detection Via Collaborative Textual, Aural And Visual Analysis

    Get PDF
    Soccer event detection deals with identifying interesting segments in soccer video via audio/visual content analysis. This task enables automatic high-level index creation, which circumvents large-scale manual annotation and facilitates semantic-based retrieval. This thesis proposes two frameworks for event detection through collaborative analysis of textual, aural and visual features. The frameworks share a common initial component where both utilize an external textual resource, which is the minute-by-minute (MBM) reports from sports broadcasters, to accurately localize sections of video containing the desired events

    Measuring concept similarities in multimedia ontologies: analysis and evaluations

    Get PDF
    The recent development of large-scale multimedia concept ontologies has provided a new momentum for research in the semantic analysis of multimedia repositories. Different methods for generic concept detection have been extensively studied, but the question of how to exploit the structure of a multimedia ontology and existing inter-concept relations has not received similar attention. In this paper, we present a clustering-based method for modeling semantic concepts on low-level feature spaces and study the evaluation of the quality of such models with entropy-based methods. We cover a variety of methods for assessing the similarity of different concepts in a multimedia ontology. We study three ontologies and apply the proposed techniques in experiments involving the visual and semantic similarities, manual annotation of video, and concept detection. The results show that modeling inter-concept relations can provide a promising resource for many different application areas in semantic multimedia processing

    Novel perspectives and approaches to video summarization

    Get PDF
    The increasing volume of videos requires efficient and effective techniques to index and structure videos. Video summarization is such a technique that extracts the essential information from a video, so that tasks such as comprehension by users and video content analysis can be conducted more effectively and efficiently. The research presented in this thesis investigates three novel perspectives of the video summarization problem and provides approaches to such perspectives. Our first perspective is to employ local keypoint to perform keyframe selection. Two criteria, namely Coverage and Redundancy, are introduced to guide the keyframe selection process in order to identify those representing maximum video content and sharing minimum redundancy. To efficiently deal with long videos, a top-down strategy is proposed, which splits the summarization problem to two sub-problems: scene identification and scene summarization. Our second perspective is to formulate the task of video summarization to the problem of sparse dictionary reconstruction. Our method utilizes the true sparse constraint L0 norm, instead of the relaxed constraint L2,1 norm, such that keyframes are directly selected as a sparse dictionary that can reconstruct the video frames. In addition, a Percentage Of Reconstruction (POR) criterion is proposed to intuitively guide users in selecting an appropriate length of the summary. In addition, an L2,0 constrained sparse dictionary selection model is also proposed to further verify the effectiveness of sparse dictionary reconstruction for video summarization. Lastly, we further investigate the multi-modal perspective of multimedia content summarization and enrichment. There are abundant images and videos on the Web, so it is highly desirable to effectively organize such resources for textual content enrichment. With the support of web scale images, our proposed system, namely StoryImaging, is capable of enriching arbitrary textual stories with visual content

    Visual Concept Detection in Images and Videos

    Get PDF
    The rapidly increasing proliferation of digital images and videos leads to a situation where content-based search in multimedia databases becomes more and more important. A prerequisite for effective image and video search is to analyze and index media content automatically. Current approaches in the field of image and video retrieval focus on semantic concepts serving as an intermediate description to bridge the “semantic gap” between the data representation and the human interpretation. Due to the large complexity and variability in the appearance of visual concepts, the detection of arbitrary concepts represents a very challenging task. In this thesis, the following aspects of visual concept detection systems are addressed: First, enhanced local descriptors for mid-level feature coding are presented. Based on the observation that scale-invariant feature transform (SIFT) descriptors with different spatial extents yield large performance differences, a novel concept detection system is proposed that combines feature representations for different spatial extents using multiple kernel learning (MKL). A multi-modal video concept detection system is presented that relies on Bag-of-Words representations for visual and in particular for audio features. Furthermore, a method for the SIFT-based integration of color information, called color moment SIFT, is introduced. Comparative experimental results demonstrate the superior performance of the proposed systems on the Mediamill and on the VOC Challenge. Second, an approach is presented that systematically utilizes results of object detectors. Novel object-based features are generated based on object detection results using different pooling strategies. For videos, detection results are assembled to object sequences and a shot-based confidence score as well as further features, such as position, frame coverage or movement, are computed for each object class. These features are used as additional input for the support vector machine (SVM)-based concept classifiers. Thus, other related concepts can also profit from object-based features. Extensive experiments on the Mediamill, VOC and TRECVid Challenge show significant improvements in terms of retrieval performance not only for the object classes, but also in particular for a large number of indirectly related concepts. Moreover, it has been demonstrated that a few object-based features are beneficial for a large number of concept classes. On the VOC Challenge, the additional use of object-based features led to a superior performance for the image classification task of 63.8% mean average precision (AP). Furthermore, the generalization capabilities of concept models are investigated. It is shown that different source and target domains lead to a severe loss in concept detection performance. In these cross-domain settings, object-based features achieve a significant performance improvement. Since it is inefficient to run a large number of single-class object detectors, it is additionally demonstrated how a concurrent multi-class object detection system can be constructed to speed up the detection of many object classes in images. Third, a novel, purely web-supervised learning approach for modeling heterogeneous concept classes in images is proposed. Tags and annotations of multimedia data in the WWW are rich sources of information that can be employed for learning visual concepts. The presented approach is aimed at continuous long-term learning of appearance models and improving these models periodically. For this purpose, several components have been developed: a crawling component, a multi-modal clustering component for spam detection and subclass identification, a novel learning component, called “random savanna”, a validation component, an updating component, and a scalability manager. Only a single word describing the visual concept is required to initiate the learning process. Experimental results demonstrate the capabilities of the individual components. Finally, a generic concept detection system is applied to support interdisciplinary research efforts in the field of psychology and media science. The psychological research question addressed in the field of behavioral sciences is, whether and how playing violent content in computer games may induce aggression. Therefore, novel semantic concepts most notably “violence” are detected in computer game videos to gain insights into the interrelationship of violent game events and the brain activity of a player. Experimental results demonstrate the excellent performance of the proposed automatic concept detection approach for such interdisciplinary research

    TractorEYE: Vision-based Real-time Detection for Autonomous Vehicles in Agriculture

    Get PDF
    Agricultural vehicles such as tractors and harvesters have for decades been able to navigate automatically and more efficiently using commercially available products such as auto-steering and tractor-guidance systems. However, a human operator is still required inside the vehicle to ensure the safety of vehicle and especially surroundings such as humans and animals. To get fully autonomous vehicles certified for farming, computer vision algorithms and sensor technologies must detect obstacles with equivalent or better than human-level performance. Furthermore, detections must run in real-time to allow vehicles to actuate and avoid collision.This thesis proposes a detection system (TractorEYE), a dataset (FieldSAFE), and procedures to fuse information from multiple sensor technologies to improve detection of obstacles and to generate a map. TractorEYE is a multi-sensor detection system for autonomous vehicles in agriculture. The multi-sensor system consists of three hardware synchronized and registered sensors (stereo camera, thermal camera and multi-beam lidar) mounted on/in a ruggedized and water-resistant casing. Algorithms have been developed to run a total of six detection algorithms (four for rgb camera, one for thermal camera and one for a Multi-beam lidar) and fuse detection information in a common format using either 3D positions or Inverse Sensor Models. A GPU powered computational platform is able to run detection algorithms online. For the rgb camera, a deep learning algorithm is proposed DeepAnomaly to perform real-time anomaly detection of distant, heavy occluded and unknown obstacles in agriculture. DeepAnomaly is -- compared to a state-of-the-art object detector Faster R-CNN -- for an agricultural use-case able to detect humans better and at longer ranges (45-90m) using a smaller memory footprint and 7.3-times faster processing. Low memory footprint and fast processing makes DeepAnomaly suitable for real-time applications running on an embedded GPU. FieldSAFE is a multi-modal dataset for detection of static and moving obstacles in agriculture. The dataset includes synchronized recordings from a rgb camera, stereo camera, thermal camera, 360-degree camera, lidar and radar. Precise localization and pose is provided using IMU and GPS. Ground truth of static and moving obstacles (humans, mannequin dolls, barrels, buildings, vehicles, and vegetation) are available as an annotated orthophoto and GPS coordinates for moving obstacles. Detection information from multiple detection algorithms and sensors are fused into a map using Inverse Sensor Models and occupancy grid maps. This thesis presented many scientific contribution and state-of-the-art within perception for autonomous tractors; this includes a dataset, sensor platform, detection algorithms and procedures to perform multi-sensor fusion. Furthermore, important engineering contributions to autonomous farming vehicles are presented such as easily applicable, open-source software packages and algorithms that have been demonstrated in an end-to-end real-time detection system. The contributions of this thesis have demonstrated, addressed and solved critical issues to utilize camera-based perception systems that are essential to make autonomous vehicles in agriculture a reality

    Probabilistic temporal multimedia datamining

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore