2,543 research outputs found

    A Simple Cooperative Diversity Method Based on Network Path Selection

    Full text link
    Cooperative diversity has been recently proposed as a way to form virtual antenna arrays that provide dramatic gains in slow fading wireless environments. However most of the proposed solutions require distributed space-time coding algorithms, the careful design of which is left for future investigation if there is more than one cooperative relay. We propose a novel scheme, that alleviates these problems and provides diversity gains on the order of the number of relays in the network. Our scheme first selects the best relay from a set of M available relays and then uses this best relay for cooperation between the source and the destination. We develop and analyze a distributed method to select the best relay that requires no topology information and is based on local measurements of the instantaneous channel conditions. This method also requires no explicit communication among the relays. The success (or failure) to select the best available path depends on the statistics of the wireless channel, and a methodology to evaluate performance for any kind of wireless channel statistics, is provided. Information theoretic analysis of outage probability shows that our scheme achieves the same diversity-multiplexing tradeoff as achieved by more complex protocols, where coordination and distributed space-time coding for M nodes is required, such as those proposed in [7]. The simplicity of the technique, allows for immediate implementation in existing radio hardware and its adoption could provide for improved flexibility, reliability and efficiency in future 4G wireless systems.Comment: To appear, IEEE JSAC, special issue on 4

    Splitting algorithm for DMT optimal cooperative MAC protocols in wireless mesh networks

    Get PDF
    A cooperative protocol for wireless mesh networks is proposed in this paper. The protocol implements both on-demand relaying and a selection of the best relay terminal so only one terminal is relaying the source message when cooperation is needed. Two additional features are also proposed. The best relay is selected with a splitting algorithm. This approach allows fast relay selection within less than three time-slots, on average. Moreover, a pre-selection of relay candidates is performed prior to the splitting algorithm. Only terminals that are able to improve the direct path are pre-selected. So efficient cooperation is now guaranteed. We prove that this approach is optimal in terms of diversity-multiplexing trade-off. The protocol has been designed in the context of Nakagami-mfading channels. Simulation results show that the performance of the splitting algorithm does not depend on channel statistics

    End-to-End Joint Antenna Selection Strategy and Distributed Compress and Forward Strategy for Relay Channels

    Full text link
    Multi-hop relay channels use multiple relay stages, each with multiple relay nodes, to facilitate communication between a source and destination. Previously, distributed space-time codes were proposed to maximize the achievable diversity-multiplexing tradeoff, however, they fail to achieve all the points of the optimal diversity-multiplexing tradeoff. In the presence of a low-rate feedback link from the destination to each relay stage and the source, this paper proposes an end-to-end antenna selection (EEAS) strategy as an alternative to distributed space-time codes. The EEAS strategy uses a subset of antennas of each relay stage for transmission of the source signal to the destination with amplify and forwarding at each relay stage. The subsets are chosen such that they maximize the end-to-end mutual information at the destination. The EEAS strategy achieves the corner points of the optimal diversity-multiplexing tradeoff (corresponding to maximum diversity gain and maximum multiplexing gain) and achieves better diversity gain at intermediate values of multiplexing gain, versus the best known distributed space-time coding strategies. A distributed compress and forward (CF) strategy is also proposed to achieve all points of the optimal diversity-multiplexing tradeoff for a two-hop relay channel with multiple relay nodes.Comment: Accepted for publication in the special issue on cooperative communication in the Eurasip Journal on Wireless Communication and Networkin

    Optimal Cooperative MAC Protocol with Efficient Selection of Relay Terminals

    Get PDF
    A new cooperative protocol is proposed in the context of wireless mesh networks. The protocol implements ondemand cooperation, i.e. cooperation between a source terminal and a destination terminal is activated only when needed. In that case, only the best relay among a set of available terminals is re-transmitting the source message to the destination terminal. This typical approach is improved using three additional features. First, a splitting algorithm is implemented to select the best relay. This ensures a fast selection process. Moreover, the duration of the selection process is now completely characterized. Second, only terminals that improve the outage probability of the direct link are allowed to participate to the relay selection. By this means, inefficient cooperation is now avoided. Finally, the destination terminal discards the source message when it fails to decode it. This saves processing time since the destination terminal does not need to combine the replicas of the source message: the one from the source terminal and the one from the best relay. We prove that the proposed protocol achieves an optimal performance in terms of Diversity-Multiplexing Tradeoff (DMT)

    Towards the Optimal Amplify-and-Forward Cooperative Diversity Scheme

    Full text link
    In a slow fading channel, how to find a cooperative diversity scheme that achieves the transmit diversity bound is still an open problem. In fact, all previously proposed amplify-and-forward (AF) and decode-and-forward (DF) schemes do not improve with the number of relays in terms of the diversity multiplexing tradeoff (DMT) for multiplexing gains r higher than 0.5. In this work, we study the class of slotted amplify-and-forward (SAF) schemes. We first establish an upper bound on the DMT for any SAF scheme with an arbitrary number of relays N and number of slots M. Then, we propose a sequential SAF scheme that can exploit the potential diversity gain in the high multiplexing gain regime. More precisely, in certain conditions, the sequential SAF scheme achieves the proposed DMT upper bound which tends to the transmit diversity bound when M goes to infinity. In particular, for the two-relay case, the three-slot sequential SAF scheme achieves the proposed upper bound and outperforms the two-relay non-orthorgonal amplify-and-forward (NAF) scheme of Azarian et al. for multiplexing gains r < 2/3. Numerical results reveal a significant gain of our scheme over the previously proposed AF schemes, especially in high spectral efficiency and large network size regime.Comment: 30 pages, 11 figures, submitted to IEEE trans. IT, revised versio
    corecore