455 research outputs found

    Overhead-controlled contention-based routing for VANETs

    Get PDF
    Routing of VANETs is a challenging issue that has attracted many attentions of researchers recently. Contention based routing protocols have good congruity with high mobility of nodes in this kind of networks. Prevention from forwarding duplicate packets is an important challenge in such routing protocols. Indeed, such duplications can reduce scalability and efficiency of contention based routing protocols. On the other hand, the prevention method can affect advantages of such routing protocols. In this paper, we proposed 2 new routing protocols by adding 2 new methods to an existing contention based routing protocol to decrease overhead of duplications. Simulation results show that overhead decreases significantly while preserving end-to-end delay and delivery ratio in suitable values

    Computational Intelligence Inspired Data Delivery for Vehicle-to-Roadside Communications

    Get PDF
    We propose a vehicle-to-roadside communication protocol based on distributed clustering where a coalitional game approach is used to stimulate the vehicles to join a cluster, and a fuzzy logic algorithm is employed to generate stable clusters by considering multiple metrics of vehicle velocity, moving pattern, and signal qualities between vehicles. A reinforcement learning algorithm with game theory based reward allocation is employed to guide each vehicle to select the route that can maximize the whole network performance. The protocol is integrated with a multi-hop data delivery virtualization scheme that works on the top of the transport layer and provides high performance for multi-hop end-to-end data transmissions. We conduct realistic computer simulations to show the performance advantage of the protocol over other approaches

    Study on QoS support in 802.11e-based multi-hop vehicular wireless ad hoc networks

    Get PDF
    Multimedia communications over vehicular ad hoc networks (VANET) will play an important role in the future intelligent transport system (ITS). QoS support for VANET therefore becomes an essential problem. In this paper, we first study the QoS performance in multi-hop VANET by using the standard IEEE 802.11e EDCA MAC and our proposed triple-constraint QoS routing protocol, Delay-Reliability-Hop (DeReHQ). In particular, we evaluate the DeReHQ protocol together with EDCA in highway and urban areas. Simulation results show that end-to-end delay performance can sometimes be achieved when both 802.11e EDCA and DeReHQ extended AODV are used. However, further studies on cross-layer optimization for QoS support in multi-hop environment are required

    Supporting Protocols for Structuring and Intelligent Information Dissemination in Vehicular Ad Hoc Networks

    Get PDF
    The goal of this dissertation is the presentation of supporting protocols for structuring and intelligent data dissemination in vehicular ad hoc networks (VANETs). The protocols are intended to first introduce a structure in VANETs, and thus promote the spatial reuse of network resources. Segmenting a flat VANET in multiple cluster structures allows for more efficient use of the available bandwidth, which can effectively increase the capacity of the network. The cluster structures can also improve the scalability of the underlying communication protocols. The structuring and maintenance of the network introduces additional overhead. The aim is to provide a mechanism for creating stable cluster structures in VANETs, and to minimize this associated overhead. Further a hybrid overlay-based geocast protocol for VANETs is presented. The protocol utilizes a backbone overlay virtual infrastructure on top of the physical network to provide geocast support, which is crucial for intervehicle communications since many applications provide group-oriented and location-oriented services. The final contribution is a structureless information dissemination scheme which creates a layered view of road conditions with a diminishing resolution as the viewing distance increases. Namely, the scheme first provides a high-detail local view of a given vehicle\u27s neighbors and its immediate neighbors, which is further extended when information dissemination is employed. Each vehicle gets aggregated information for road conditions beyond this extended local view. The scheme allows for the preservation of unique reports within aggregated frames, such that safety critical notifications are kept in high detail, all for the benefit of the driver\u27s improved decision making during emergency scenarios

    DESIGN OF EFFICIENT IN-NETWORK DATA PROCESSING AND DISSEMINATION FOR VANETS

    Get PDF
    By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment

    Persistent Localized Broadcasting in VANETs

    Get PDF
    We present a communication protocol, called LINGER, for persistent dissemination of delay-tolerant information to vehicular users, within a geographical area of interest. The goal of LINGER is to dispatch and confine information in localized areas of a mobile network with minimal protocol overhead and without requiring knowledge of the vehicles' routes or destinations. LINGER does not require roadside infrastructure support: it selects mobile nodes in a distributed, cooperative way and lets them act as "information bearers", providing uninterrupted information availability within a desired region. We analyze the performance of our dissemination mechanism through extensive simulations, in complex vehicular scenarios with realistic node mobility. The results demonstrate that LINGER represents a viable, appealing alternative to infrastructure-based solutions, as it can successfully drive the information toward a region of interest from a far away source and keep it local with negligible overhead. We show the effectiveness of such an approach in the support of localized broadcasting, in terms of both percentage of informed vehicles and information delivery delay, and we compare its performance to that of a dedicated, state-of-the-art protoco

    Road-based routing in vehicular ad hoc networks

    Get PDF
    Vehicular ad hoc networks (VANETs) can provide scalable and cost-effective solutions for applications such as traffic safety, dynamic route planning, and context-aware advertisement using short-range wireless communication. To function properly, these applications require efficient routing protocols. However, existing mobile ad hoc network routing and forwarding approaches have limited performance in VANETs. This dissertation shows that routing protocols which account for VANET-specific characteristics in their designs, such as high density and constrained mobility, can provide good performance for a large spectrum of applications. This work proposes a novel class of routing protocols as well as three forwarding optimizations for VANETs. The Road-Based using Vehicular Traffic (RBVT) routing is a novel class of routing protocols for VANETs. RBVT protocols leverage real-time vehicular traffic information to create stable road-based paths consisting of successions of road intersections that have, with high probability, network connectivity among them. Evaluations of RBVT protocols working in conjunction with geographical forwarding show delivery rate increases as much as 40% and delay decreases as much as 85% when compared with existing protocols. Three optimizations are proposed to increase forwarding performance. First, one- hop geographical forwarding is improved using a distributed receiver-based election of next hops, which leads to as much as 3 times higher delivery rates in highly congested networks. Second, theoretical analysis and simulation results demonstrate that the delay in highly congested networks can be reduced by half by switching from traditional FIFO with Taildrop queuing to LIFO with Frontdrop queuing. Third, nodes can determine suitable times to transmit data across RBVT paths or proactively replace routes before they break using analytical models that accurately predict the expected road-based path durations in VANETs
    • 

    corecore