315 research outputs found

    Overhead Verification for Cryptographically Secured Transmission on the Grid

    Get PDF
    It is well known that the network protocols frequently used in Internet and Local Area Networks do not ensure the security level required for current distributed applications. This is even more crucial for the Grid environment. Therefore asymmetric cryptography algorithms have been applied in order to secure information transmitted over the network. The security level enforced by means of the algorithms is found sufficient, however it introduces additional transmission overhead. In this paper we describe experiments performed in order to evaluate transmission efficiency depending on the security level applied

    Secure Position-Based Routing for VANETs

    Get PDF
    Vehicular communication (VC) systems have the potential to improve road safety and driving comfort. Nevertheless, securing the operation is a prerequisite for deployment. So far, the security of VC applications has mostly drawn the attention of research efforts, while comprehensive solutions to protect the network operation have not been developed. In this paper, we address this problem: we provide a scheme that secures geographic position-based routing, which has been widely accepted as the appropriate one for VC. Moreover, we focus on the scheme currently chosen and evaluated in the Car2Car Communication Consortium (C2C-CC). We integrate security mechanisms to protect the position-based routing functionality and services (beaconing, multi-hop forwarding, and geo-location discovery), and enhance the network robustness. We propose defense mechanisms, relying both on cryptographic primitives, and plausibility checks mitigating false position injection. Our implementation and initial measurements show that the security overhead is low and the proposed scheme deployable

    A reliable next generation cyber security architecture for industrial internet of things environment

    Get PDF
    Architectural changes are happening in the modern industries due to the adaption and the deployment of ‘Internet of Things (IoT)’ for monitoring and controlling various devices remotely from the external world. The most predominant place where the IoT technology makes the most sense is the industrial automation processes in smart industries (Industry 4.0). In this paper, a reliable ‘Next Generation Cyber Security Architecture (NCSA)’ is presented for Industrial IoT (IIoT) environment that detects and thwarts cybersecurity threats and vulnerabilities. It helps to automate the processes of exchanging real-time critical information between devices without any human intervention. It proposes an analytical framework that can be used to protect entities and network traffics involved in the IIoT wireless communication. It incorporates an automated cyber-defense authentication mechanism that detects and prevents security attacks when a network session has been established. The defense mechanism accomplishes the required level of security protection in the network by generating an identity token which is cryptographically encrypted and verified by a virtual gateway system. The proposed NCSA improves security in the IIoT environment and reduces operational management cost

    Enabling individually entrusted routing security for open and decentralized community networks

    Get PDF
    Routing in open and decentralized networks relies on cooperation. However, the participation of unknown nodes and node administrators pursuing heterogeneous trust and security goals is a challenge. Community-mesh networks are good examples of such environments due to their open structure, decentralized management, and ownership. As a result, existing community networks are vulnerable to various attacks and are seriously challenged by the obligation to find consensus on the trustability of participants within an increasing user size and diversity. We propose a practical and novel solution enabling a secured but decentralized trust management. This work presents the design and analysis of securely-entrusted multi-topology routing (SEMTOR), a set of routing-protocol mechanisms that enable the cryptographically secured negotiation and establishment of concurrent and individually trusted routing topologies for infrastructure-less networks without relying on any central management. The proposed mechanisms have been implemented, tested, and evaluated for their correctness and performance to exclude non-trusted nodes from the network. Respective safety and liveness properties that are guaranteed by our protocol have been identified and proven with formal reasoning. Benchmarking results, based on our implementation as part of the BMX7 routing protocol and tested on real and minimal (OpenWRT, 10 Euro) routers, qualify the behaviour, performance, and scalability of our approach, supporting networks with hundreds of nodes despite the use of strong asymmetric cryptography.Peer ReviewedPostprint (author's final draft

    Analysis of PKI as a Means of Securing ODF Documents

    Get PDF
    Public Key Infrastructure (PKI) has for the last two decades been a means of securing systems and communication. With the adoption of Open Document Format (ODF) as an ISO standard, the question remains if the unpopular, expensive, complex and unmaintainable PKI can prove to be a viable means of securing ODF documents. This paper analyses the drawbacks of PKI and evaluates the useji.tlness of PKl in provisioning robust, cheap and maintainable XML security to XML based ODF. This paper also evaluates the existing research on XML security, more specifically fine grained access control

    A trust-driven privacy architecture for vehicular ad-hoc networks

    Get PDF
    Vehicular Ad-Hoc NETworks (VANETs) are an emerging technology which aims to improve road safety by preventing and reducing traffic accidents. While VANETs offer a great variety of promising applications, such as, safety-related and infotainment applications, they remain a number of security and privacy related research challenges that must be addressed. A common approach to security issues widely adopted in VANETs is the use of Public Key Infrastructures (PKI) and digital certificates in order to enable authentication, authorization and confidentiality. These approaches usually rely on a large set of regional Certification Authorities (CAs). Despite the advantages of PKI-based approaches, there are two main problems that arise, i) the secure interoperability among the different and usually unknown- issuing CAs, and ii) the sole use of PKI in a VANET environment cannot prevent privacy related attacks, such as, linking a vehicle with an identifier, tracking vehicles Âżbig brother scenario" and user profiling. Additionally, since vehicles in VANETs will be able to store great amounts of information including private information, unauthorized access to such information should be carefully considered. This thesis addresses authentication and interoperability issues in vehicular communications, considering an inter-regional scenario where mutual authentication between nodes is needed. To provide interoperability between vehicles and services among different domains, an Inter-domain Authentication System (AS) is proposed. The AS supplies vehicles with a trusted set of authentication credentials by implementing a near real-time certificate status service. The proposed AS also implements a mechanism to quantitatively evaluate the trust level of a CA, in order to decide on-the-y if an interoperability relationship can be created. This research work also contributes with a Privacy Enhancing Model (PEM) to deal with important privacy issues in VANETs. The PEM consists of two PKI-based privacy protocols: i) the Attribute-Based Privacy (ABP) protocol, and ii) the Anonymous Information Retrieval (AIR) protocol. The ABP introduces Attribute-Based Credentials (ABC) to provide conditional anonymity and minimal information disclosure, which overcome with the privacy issues related to linkability (linking a vehicle with an identifier) and vehicle tracking (big brother scenario). The AIR protocol addresses user profiling when querying Service Providers (SPs), by relying in a user collaboration privacy protocol based on query forgery and permutation; and assuming that neither participant nodes nor SPs could be completely trusted. Finally, the Trust Validation Model (TVM) is proposed. The TVM supports decision making by evaluating entities trust based on context information, in order to provide i) access control to driver and vehicle's private information, and ii) public information trust validation
    • …
    corecore