146 research outputs found

    Interference in vehicle-to-vehicle communication networks - analysis, modeling, simulation and assessment

    Get PDF
    In wireless vehicular communication networks the periodic transmission of status updates by all vehicles represents a basic service primitive, in particular for safety related applications. Due to the limited communication resources the question raises how much data each node may provide such that the quality of service required by applications can still be guaranteed under realistic interference conditions. Local broadcasts capacity is introduced and analyzed to tackle this open question

    Emulation platform design for multimedia applications over vehicular networks

    Get PDF
    Safety applications seems that will be decisive for a successful introduction to the automotive market for the vehicular networks. However, another kind of applications could be very helpful in order to reach the maximum number of equipped vehicles after market introduction, because can attract a greater number of users and facilitate a vehicular infrastructure investment because vehicular communication must provide business opportunities for Internet service providers to generate revenue. One of these kind of applications is live video streaming over vehicular networks. Video streaming is an attractive feature to many applications, such as emergency live video transmission, video on demand services, road-side video advertisement broadcasting and inter-vehicle video conversation. Test and evaluate implementations in a real testbed environment could be very costly and di cult in this kind of networks. Simulations are still commonly used as a first step in any development for vehicular networks research. Therefore, to test this kind of applications an emulation platform for multimedia applications over vehicular networks is presented in this article. We’ve studied the performance of video streaming services in a infrastructure environment over a highways taking special account in the losses that produces handovers during the communication caused by the network mobility

    SDDV: scalable data dissemination in vehicular ad hoc networks

    Get PDF
    An important challenge in the domain of vehicular ad hoc networks (VANET) is the scalability of data dissemination. Under dense traffic conditions, the large number of communicating vehicles can easily result in a congested wireless channel. In that situation, delays and packet losses increase to a level where the VANET cannot be applied for road safety applications anymore. This paper introduces scalable data dissemination in vehicular ad hoc networks (SDDV), a holistic solution to this problem. It is composed of several techniques spread across the different layers of the protocol stack. Simulation results are presented that illustrate the severity of the scalability problem when applying common state-of-the-art techniques and parameters. Starting from such a baseline solution, optimization techniques are gradually added to SDDV until the scalability problem is entirely solved. Besides the performance evaluation based on simulations, the paper ends with an evaluation of the final SDDV configuration on real hardware. Experiments including 110 nodes are performed on the iMinds w-iLab.t wireless lab. The results of these experiments confirm the results obtained in the corresponding simulations

    Mobility Impact on Centralized Selection of Mobile Relays

    Get PDF

    Emulation platform design for multimedia applications over vehicular networks

    Get PDF
    Safety applications seems that will be decisive for a successful introduction to the automotive market for the vehicular networks. However, another kind of applications could be very helpful in order to reach the maximum number of equipped vehicles after market introduction, because can attract a greater number of users and facilitate a vehicular infrastructure investment because vehicular communication must provide business opportunities for Internet service providers to generate revenue. One of these kind of applications is live video streaming over vehicular networks. Video streaming is an attractive feature to many applications, such as emergency live video transmission, video on demand services, road-side video advertisement broadcasting and inter-vehicle video conversation. Test and evaluate implementations in a real testbed environment could be very costly and di cult in this kind of networks. Simulations are still commonly used as a first step in any development for vehicular networks research. Therefore, to test this kind of applications an emulation platform for multimedia applications over vehicular networks is presented in this article. We’ve studied the performance of video streaming services in a infrastructure environment over a highways taking special account in the losses that produces handovers during the communication caused by the network mobility

    Location-based Mobile Relay Selection and Impact of Inaccurate Path Loss Model Parameters

    Get PDF

    Enabling Accurate Cross-Layer PHY/MAC/NET Simulation Studies of Vehicular Communication Networks

    Get PDF
    Vehicle-to-vehicle and vehicle-to-roadside communications is required for numerous applications that aim at improving traffic safety and efficiency. In this setting, however, gauging system performance through field trials can be very expensive especially when the number of studied vehicles is high. Therefore, many existing studies have been conducted using either network or physical layer simulators; both approaches are problematic. Network simulators typically abstract physical layer details (coding, modulation, radio channels, receiver algorithms, etc.) while physical layer ones do not consider overall network characteristics (topology, network traffic types, and so on). In particular, network simulators view a transmitted frame as an indivisible unit, which leads to several limitations. First, the impact of the vehicular radio channel is typically not reflected in its appropriate context. Further, interference due to frame collisions is not modeled accurately ( if at all) and, finally, the benefits of advanced signal processing techniques, such as interference cancellation, are difficult to assess. To overcome these shortcomings we have integrated a detailed physical layer simulator into the popular NS-3 network simulator. This approach aims to bridge the gap between the physical and network layer perspectives, allow for more accurate channel and physical layer models, and enable studies on cross-layer optimization. In this paper, we exemplify our approach by integrating an IEEE 802.11a and p physical layer simulator with NS-3. Further, we validate the augmented NS-3 simulator against an actual IEEE 802.11 wireless testbed and illustrate the additional value of this integration

    On the impact of Wi-Fi multimedia power save mode on the VoIP capacity of WLANs

    Get PDF
    VoIP capacity is an important metric as it determines the maximum number of calls that can be supported by a Wireless Local Area Network (WLAN) before call quality degrades. To this end, researchers have conducted extensive simulation and analytical studies to determine the VoIP capacity of different WLANs. These previous works, however, assume stations are always awake during a call. In 2005, the Wi-Fi Alliance proposed a power saving mode extension that allows stations to retrieve packets from the Access Point (AP) at any time. In light of this development, this paper derives the VoIP capacity of a IEEE 802.11a WLAN where stations sleep for different time intervals. Moreover, it proposes a novel opportunistic scheduler that addresses a critical problem that arises when the power save extension is used in conjunction with a solution that improves the VoIP capacity of a WLAN by aggregating packets

    Miracle: the multi-interface cross-layer extension of ns2

    Get PDF
    We present Miracle, a novel framework which extends ns2 to facilitate the simulation and the design of beyond 4G networks. Miracle enhances ns2 by providing an efficient and embedded engine for handling cross-layer messages and, at the same time, enabling the coexistence of multiple modules within each layer of the protocol stack. We also present a novel framework developed as an extension of Miracle called Miracle PHY and MAC. This framework facilitates the development of more realistic Channel, PHY and MAC modules, considering features currently lacking in most state-of-the-art simulators, while at the same time giving a strong emphasis on code modularity, interoperability and reusability. Finally, we provide an overview of the wireless technologies implemented in Miracle, discussing in particular the models for the IEEE 802.11, UMTS and WiMAX standards and for Underwater Acoustic Networks. We observe that, thanks to Miracle and its extensions, it is possible to carefully simulate complex network architectures at all the OSI layers, from the physical reception model to standard applications and system management schemes. This allows to have a comprehensive view of all the interactions among network components, which play an important role in many research areas, such as cognitive networking and cross-layer design
    • …
    corecore