6 research outputs found

    MM Algorithms for Joint Independent Subspace Analysis with Application to Blind Single and Multi-Source Extraction

    Full text link
    In this work, we propose efficient algorithms for joint independent subspace analysis (JISA), an extension of independent component analysis that deals with parallel mixtures, where not all the components are independent. We derive an algorithmic framework for JISA based on the majorization-minimization (MM) optimization technique (JISA-MM). We use a well-known inequality for super-Gaussian sources to derive a surrogate function of the negative log-likelihood of the observed data. The minimization of this surrogate function leads to a variant of the hybrid exact-approximate diagonalization problem, but where multiple demixing vectors are grouped together. In the spirit of auxiliary function based independent vector analysis (AuxIVA), we propose several updates that can be applied alternately to one, or jointly to two, groups of demixing vectors. Recently, blind extraction of one or more sources has gained interest as a reasonable way of exploiting larger microphone arrays to achieve better separation. In particular, several MM algorithms have been proposed for overdetermined IVA (OverIVA). By applying JISA-MM, we are not only able to rederive these in a general manner, but also find several new algorithms. We run extensive numerical experiments to evaluate their performance, and compare it to that of full separation with AuxIVA. We find that algorithms using pairwise updates of two sources, or of one source and the background have the fastest convergence, and are able to separate target sources quickly and precisely from the background. In addition, we characterize the performance of all algorithms under a large number of noise, reverberation, and background mismatch conditions.Comment: 15 pages, 4 figure

    Iterative issues of ICA, quality of separation and number of sources : a study for biosignal applications

    Get PDF
    This thesis has evaluated the use of Independent Component Analysis (ICA) on Surface Electromyography (sEMG), focusing on the biosignal applications. This research has identified and addressed the following four issues related to the use of ICA for biosignals: • The iterative nature of ICA • The order and magnitude ambiguity problems of ICA • Estimation of number of sources based on dependency and independency nature of the signals • Source separation for non-quadratic ICA (undercomplete and overcomplete) This research first establishes the applicability of ICA for sEMG and also identifies the shortcomings related to order and magnitude ambiguity. It has then developed, a mitigation strategy for these issues by using a single unmixing matrix and neural network weight matrix corresponding to the specific user. The research reports experimental verification of the technique and also the investigation of the impact of inter-subject and inter-experimental variations. The results demonstrate that while using sEMG without separation gives only 60% accuracy, and sEMG separated using traditional ICA gives an accuracy of 65%, this approach gives an accuracy of 99% for the same experimental data. Besides the marked improvement in accuracy, the other advantages of such a system are that it is suitable for real time operations and is easy to train by a lay user. The second part of this thesis reports research conducted to evaluate the use of ICA for the separation of bioelectric signals when the number of active sources may not be known. The work proposes the use of value of the determinant of the Global matrix generated using sparse sub band ICA for identifying the number of active sources. The results indicate that the technique is successful in identifying the number of active muscles for complex hand gestures. The results support the applications such as human computer interface. This thesis has also developed a method of determining the number of independent sources in a given mixture and has also demonstrated that using this information, it is possible to separate the signals in an undercomplete situation and reduce the redundancy in the data using standard ICA methods. The experimental verification has demonstrated that the quality of separation using this method is better than other techniques such as Principal Component Analysis (PCA) and selective PCA. This has number of applications such as audio separation and sensor networks

    Overdetermined Blind Separation for Convolutive Mixtures of Speech Based on Multistage ICA using Subarray Processing

    Get PDF
    ICASSP2004: IEEE International Conference on Acoustics, Speech, and Signal Processing, May 17-21, 2004, Quebec, Canada.We propose a new algorithm for overdetermined blind source separation based on multistage independent component analysis (MSICA). To improve the separation performance, we have proposed MSICA in which frequency-domain ICA and time-domain ICA are cascaded. In the original MSICA, the specific mixing model, where the number of microphones is equal to that of sources, was assumed. However, additional microphones are required to achieve an improved separation performance under reverberant environments. This leads to alternative problems, e.g., a complication of the permutation problem. In order to solve them, we propose a new extended MSICA using subarray processing, where the number of microphones and that of sources are set to be the same in every subarray. The experimental results obtained under the real environment reveal that the separation performance of the proposed MSICA is improved as the number of microphones is increased

    Overdetermined Blind Separation for Real Convolutive Mixtures of Speech Based on Multistage ICA Using Subarray Processing

    No full text
    We propose a new algorithm for overdetermined blind source separation (BSS) based on multistage independent component analysis (MSICA). To improve the separation performance, we have proposed MSICA in which frequency-domain ICA and time-domain ICA are cascaded. In the original MSICA, the specific mixing model, where the number of microphones is equal to that of sources, was assumed. However, additional microphones are required to achieve an improved separation performance under reverberant environments. This leads to alternative problems, e. g., a complication of the permutation problem. In order to solve them, we propose a new extended MSICA using subarray processing, where the number of microphones and that of sources are set to be the same in every subarray. The experimental results obtained under the real environment reveal that the separation performance of the proposed MSICA is improved as the number of microphones is increased
    corecore