9,609 research outputs found

    Analysis and hardware testing of cell capacitor discharge currents during DC faults in half-bridge modular multilevel converters

    Get PDF
    This paper focuses on the behaviour of the cell capacitor discharge currents during DC faults in half-bridge modular multilevel converters. Active switches, not designed for fault conditions, are tripped to minimize discharge currents effect on the semiconductor switches. Two levels of device protection are commonly in place; driver level protection monitoring collector-emitter voltage and overcurrent protection with feedback measurement and control. However, unavoidable tripping delay times, arising from factors such as sensor lags, controller sampling delays and hardware propagation delays, impact transient current shape and hence affect the selection of semiconductor device ratings as well as arm inductance. Analytical expressions are obtained for current slew rate, peak transient current and resultant I2t for the cell capacitor discharge current taking into account such delays. The study is backed by experimental testing on discharge of a 900V MMC capacitor

    Evaluating the impact of superconducting fault current limiters on distribution network protection schemes

    Get PDF
    Rising fault levels are becoming increasingly problematic in the UK distribution network, with large sections of the network operating near to its designed fault level capability. With the increase in penetration of distributed generation that is expected in the coming years, this situation is becoming more pressing. Traditional methods of dealing with the issue may not be appropriate - upgrading plant is expensive and disruptive, while network reconfiguration can compromise security of supply. Superconducting Fault Current Limiters (SFCLs) are emerging as a potential solution, with installations now taking place in several locations worldwide. The integration of an SFCL into a network involves a number of challenges, particularly concerning the coordination of protection systems. The operation of existing protection schemes may be compromised due to the increased resistance in the network during a fault (in the case of a resistive SFCL). Furthermore, the reduction in fault levels, although desirable, can have a detrimental impact on protection operating times. This paper will consider an existing medium voltage network in the UK, which incorporates distributed generation capacity. The performance of IDMT overcurrent and distance protection schemes will be examined when an SFCL is installed in this network. In particular, the increased operating time of overcurrent relays will be discussed along with grading implications. The impact on distance protection reach will also be examined. A variety of network operational scenarios including SFCL placement and fault conditions will be considered and compared. Recommendations will be made in terms of protection settings and SFCL placement in order to mitigate the aforementioned issues

    Apparatus for overcurrent protection of a push-pull amplifier Patent

    Get PDF
    Overcurrent protecting circuit for push-pull transistor amplifier

    An Adaptive Overcurrent Coordination Scheme to Improve Relay Sensitivity and Overcome Drawbacks due to Distributed Generation in Smart Grids

    Get PDF
    Distributed Generation (DG) brought new challenges for protection engineers since standard relay settings of traditional system may no longer function properly under increasing presence of DG. The extreme case is coordination loss between primary and backup relays. The directional overcurrent relay (DOCR) which is the most implemented protective device in the electrical network also suffers performance degradation in presence of DG. Therefore, this paper proposes the mitigation of DG impact on DOCR coordination employing adaptive protection scheme (APS) using differential evolution algorithm (DE) while improving overall sensitivity of relays . The impacts of DG prior and after the application of APS are presented based on interconnected 6 bus and IEEE 14 bus system. As a consequence, general sensitivity improvement and mitigation scheme is proposed

    Latching overcurrent circuit breaker

    Get PDF
    Circuit breaker consists of a preset current amplitude sensor, and a lamp-photo-resistor combination in a feedback arrangement which energizes a power switching relay. The ac input power is removed from the load at predetermined current amplitudes

    Thermal analysis of lithium ion battery-equipped smartphone explosions

    Get PDF
    Thermal management of mobile electronics has been carried out because performance of the application processor has increased and power dissipation in miniaturized devices is proportional to its functionalities. There have been various studies on thermal analyses related to mobile electronics with the objectives of improving analysis methodologies and cooling strategies to guarantee device safety. Despite these efforts, failure to control thermal energy, especially in smartphones, has resulted in explosions, because thermal behaviors in the device under various operating conditions have not been sufficiently conducted. Therefore, several scenarios that caused the failure in thermal management of smartphone was analyzed to provide improved insight into thermal design deducing the parameters, that affect the thermal management of device. Overcurrent in battery due to malfunction of battery management system or immoderate addition of functionalities to the application processor are considered as reliable causes leading to the recent thermal runaways and explosions. From the analyses, it was also confirmed that the heat generation of the battery, which have not been considered importantly in previous literature, has significant effect on thermal management, and heat spreading could be suppressed according to arrangement of AP and battery. The heat pipe, which is utilized as a cooling device in mobile electronics, was also included in the thermal analyses. Although the heat pipes have been expected to improve the thermal management in mobile electronics, it showed limited heat transfer capacity due to its operating conditions and miniaturization. The demonstrated results of our analysis warn against vulnerabilities of smartphones in terms of safety in design

    Optimizing the roles of unit and non-unit protection methods within DC microgrids

    Get PDF
    The characteristic behavior of physically compact, multiterminal dc networks under electrical fault conditions can produce demanding protection requirements. This represents a significant barrier to more widespread adoption of dc power distribution for microgrid applications. Protection schemes have been proposed within literature for such networks based around the use of non-unit protection methods. This paper shows however that there are severe limitations to the effectiveness of such schemes when employed for more complex microgrid network architectures. Even current differential schemes, which offer a more effective, though costly, protection solution, must be carefully designed to meet the design requirements resulting from the unique fault characteristics of dc microgrids. This paper presents a detailed analysis of dc microgrid behavior under fault conditions, illustrating the challenging protection requirements and demonstrating the shortcomings of non-unit approaches for these applications. Whilst the performance requirements for the effective operation of differential schemes in dc microgrids are shown to be stringent, the authors show how these may be met using COTS technologies. The culmination of this work is the proposal of a flexible protection scheme design framework for dc microgrid applications which enables the required levels of fault discrimination to be achieved whilst minimizing the associated installation costs
    corecore