4,749 research outputs found

    Bioinspired engineering of exploration systems for NASA and DoD

    Get PDF
    A new approach called bioinspired engineering of exploration systems (BEES) and its value for solving pressing NASA and DoD needs are described. Insects (for example honeybees and dragonflies) cope remarkably well with their world, despite possessing a brain containing less than 0.01% as many neurons as the human brain. Although most insects have immobile eyes with fixed focus optics and lack stereo vision, they use a number of ingenious, computationally simple strategies for perceiving their world in three dimensions and navigating successfully within it. We are distilling selected insect-inspired strategies to obtain novel solutions for navigation, hazard avoidance, altitude hold, stable flight, terrain following, and gentle deployment of payload. Such functionality provides potential solutions for future autonomous robotic space and planetary explorers. A BEES approach to developing lightweight low-power autonomous flight systems should be useful for flight control of such biomorphic flyers for both NASA and DoD needs. Recent biological studies of mammalian retinas confirm that representations of multiple features of the visual world are systematically parsed and processed in parallel. Features are mapped to a stack of cellular strata within the retina. Each of these representations can be efficiently modeled in semiconductor cellular nonlinear network (CNN) chips. We describe recent breakthroughs in exploring the feasibility of the unique blending of insect strategies of navigation with mammalian visual search, pattern recognition, and image understanding into hybrid biomorphic flyers for future planetary and terrestrial applications. We describe a few future mission scenarios for Mars exploration, uniquely enabled by these newly developed biomorphic flyers

    Scientific Preparations for Lunar Exploration with the European Lunar Lander

    Full text link
    This paper discusses the scientific objectives for the ESA Lunar Lander Mission, which emphasise human exploration preparatory science and introduces the model scientific payload considered as part of the on-going mission studies, in advance of a formal instrument selection.Comment: Accepted for Publication in Planetary and Space Science 51 pages, 8 figures, 1 tabl

    OAST Space Theme Workshop. Volume 2: Theme summary. 4: Solar system exploration (no. 10). A: Statement of theme: B. 26 April 1976 Presentation. C. Summary. D. Initiative actions (form 5)

    Get PDF
    Major strategies for exploring the solar system focus on the return of information and the return of matter. Both the planetary exploration facility, and an orbiting automated space station, and the sample return and exploration facility have similar requirements. The single most essential need to enable intensive study of the outer solar system is nuclear propulsion and power capability. New initiatives in 1978 related to the reactor, data and sample acquisition and return, navigation, and environmental protection are examined

    Skyline matching: absolute localisation for planetary exploration rovers

    Get PDF
    Skyline matching is a technique for absolute localisation framed in the category of autonomous long-range exploration. Absolute localisation becomes crucial for planetary exploration to recalibrate position during long traverses or to estimate position with no a-priori information. In this project, a skyline matching algorithm is proposed, implemented and evaluated using real acquisitions and simulated data. The function is based on comparing the skyline extracted from rover images and orbital data. The results are promising but intensive testing on more real data is needed to further characterize the algorithm

    High Accuracy Tracking of Space-Borne Non-Cooperative Targets

    Get PDF
    • …
    corecore