30,369 research outputs found

    A comparative study of calibration methods for low-cost ozone sensors in IoT platforms

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper shows the result of the calibration process of an Internet of Things platform for the measurement of tropospheric ozone (O 3 ). This platform, formed by 60 nodes, deployed in Italy, Spain, and Austria, consisted of 140 metal–oxide O 3 sensors, 25 electro-chemical O 3 sensors, 25 electro-chemical NO 2 sensors, and 60 temperature and relative humidity sensors. As ozone is a seasonal pollutant, which appears in summer in Europe, the biggest challenge is to calibrate the sensors in a short period of time. In this paper, we compare four calibration methods in the presence of a large dataset for model training and we also study the impact of a limited training dataset on the long-range predictions. We show that the difficulty in calibrating these sensor technologies in a real deployment is mainly due to the bias produced by the different environmental conditions found in the prediction with respect to those found in the data training phase.Peer ReviewedPostprint (author's final draft

    The Programmable City

    Get PDF
    AbstractThe worldwide proliferation of mobile connected devices has brought about a revolution in the way we live, and will inevitably guide the way in which we design the cities of the future. However, designing city-wide systems poses a new set of challenges in terms of scale, manageability and citizen involvement. Solving these challenges is crucial to making sure that the vision of a programmable Internet of Things (IoT) becomes reality. In this article we will analyse these issues and present a novel programming approach to designing scalable systems for the Internet of Things, with an emphasis on smart city applications, that addresses these issues

    Autonomous deployment and repair of a sensor network using an unmanned aerial vehicle

    Get PDF
    We describe a sensor network deployment method using autonomous flying robots. Such networks are suitable for tasks such as large-scale environmental monitoring or for command and control in emergency situations. We describe in detail the algorithms used for deployment and for measuring network connectivity and provide experimental data we collected from field trials. A particular focus is on determining gaps in connectivity of the deployed network and generating a plan for a second, repair, pass to complete the connectivity. This project is the result of a collaboration between three robotics labs (CSIRO, USC, and Dartmouth.)
    • …
    corecore