2 research outputs found

    Monolithic electronic-photonic integration in state-of-the-art CMOS processes

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 388-407).As silicon CMOS transistors have scaled, increasing the density and energy efficiency of computation on a single chip, the off-chip communication link to memory has emerged as the major bottleneck within modern processors. Photonic devices promise to break this bottleneck with superior bandwidth-density and energy-efficiency. Initial work by many research groups to adapt photonic device designs to a silicon-based material platform demonstrated suitable independent performance for such links. However, electronic-photonic integration attempts to date have been limited by the high cost and complexity associated with modifying CMOS platforms suitable for modern high-performance computing applications. In this work, we instead utilize existing state-of-the-art electronic CMOS processes to fabricate integrated photonics by: modifying designs to match the existing process; preparing a design-rule compliant layout within industry-standard CAD tools; and locally-removing the handle silicon substrate in the photonic region through post-processing. This effort has resulted in the fabrication of seven test chips from two major foundries in 28, 45, 65 and 90 nm CMOS processes. Of these efforts, a single die fabricated through a widely available 45nm SOI-CMOS mask-share foundry with integrated waveguides with 3.7 dB/cm propagation loss alongside unmodified electronics with less than 5 ps inverter stage delay serves as a proof-of-concept for this approach. Demonstrated photonic devices include high-extinction carrier-injection modulators, 8-channel wavelength division multiplexing filter banks and low-efficiency silicon germanium photodetectors. Simultaneous electronic-photonic functionality is verified by recording a 600 Mb/s eye diagram from a resonant modulator driven by integrated digital circuits. Initial work towards photonic device integration within the peripheral CMOS flow of a memory process that has resulted in polysilicon waveguide propagation losses of 6.4 dB/cm will also be presented.by Jason S. Orcutt.Ph.D

    In-situ and In-field temperature and transistor BTI sensing techniques with microprocessor level implementation

    Get PDF
    In modern deep-scaled CMOS technologies, various silicon-related pitfalls present challenges to the long-term performance of microprocessors. Such challenges include (1) local hot spots, which breach the thermal limitations of a microprocessor, and (2) transistor aging, especially NBTI, which degrades transistor threshold voltage, ultimately threatening the reliability of the entire memory block. In previous systems, the dummy circuit was placed next to the subject, where the dummy was frequently analyzed, and the readout was used to infer the condition of the target. Due to rapidly changing ambient conditions (e.g., temperature and voltage) and the potential scale of the target dimensions, such metrics may not accurately represent the condition of the target. Moreover, such temperature sensors and canary circuits occupy a significant area. Therefore, it would be highly preferable to monitor the target circuit in-situ, i.e., to sense the precise transistor at operation. It is also important to achieve an accurate sensing metric. When the temperature is analyzed, the readout should account for voltage and process variations. While sensing the aging degradation, the readout should account for voltage and temperature fluctuations. This would allow testing during in-field operation, while the circuits achieve area-efficiency. This research had two stages. One result of the first stage was a silicon test chip that was a compact temperature sensor. It involved a family of PTAT+CTAT sensor front-ends that unitized only 6 to 8 conventional CMOS logic devices, yielding a smaller sized chip. The sensor demonstrates accuracy within the target and achieves a 14.3x smaller foot print than preceding published designs. The second product of the first stage was a PMOS aging sensor used in 6T SRAM circuits. The test chip has a real SRAM array, integrated with the proposed PMOS NBTI sensor. It can sense real PMOS NBTI effects in any bit cell (in-situ) and provide robust readings of temperature and voltage (in-field). Intensive aging tests validated the proposed sensing technique. The second stage was focused on implementing the in-situ and in-field sensing techniques in a real processor. The MIPS microprocessor had a modified instruction cache (I$) and instruction set architecture. With the addition of new instruction aging sensing and minor modification of the circuits, the processor can execute aging sensing opportunistically to evaluate the aging level of its instruction cache. A software framework was developed and verified to estimate the retention voltage of the instruction cache over the lifetime of the chip. An area-efficient SoC was developed that could transform the instruction cache into an ambient temperature sensor. It had a physically unclonable function (PUF), and it was built with an area-saving technique similar to the earlier work. This thesis has four chapters. They are presented in chronological and they are aligned with the research described above
    corecore