2,045 research outputs found

    Outward Influence and Cascade Size Estimation in Billion-scale Networks

    Full text link
    Estimating cascade size and nodes' influence is a fundamental task in social, technological, and biological networks. Yet this task is extremely challenging due to the sheer size and the structural heterogeneity of networks. We investigate a new influence measure, termed outward influence (OI), defined as the (expected) number of nodes that a subset of nodes SS will activate, excluding the nodes in S. Thus, OI equals, the de facto standard measure, influence spread of S minus |S|. OI is not only more informative for nodes with small influence, but also, critical in designing new effective sampling and statistical estimation methods. Based on OI, we propose SIEA/SOIEA, novel methods to estimate influence spread/outward influence at scale and with rigorous theoretical guarantees. The proposed methods are built on two novel components 1) IICP an important sampling method for outward influence, and 2) RSA, a robust mean estimation method that minimize the number of samples through analyzing variance and range of random variables. Compared to the state-of-the art for influence estimation, SIEA is Ω(log4n)\Omega(\log^4 n) times faster in theory and up to several orders of magnitude faster in practice. For the first time, influence of nodes in the networks of billions of edges can be estimated with high accuracy within a few minutes. Our comprehensive experiments on real-world networks also give evidence against the popular practice of using a fixed number, e.g. 10K or 20K, of samples to compute the "ground truth" for influence spread.Comment: 16 pages, SIGMETRICS 201

    Importance Sketching of Influence Dynamics in Billion-scale Networks

    Full text link
    The blooming availability of traces for social, biological, and communication networks opens up unprecedented opportunities in analyzing diffusion processes in networks. However, the sheer sizes of the nowadays networks raise serious challenges in computational efficiency and scalability. In this paper, we propose a new hyper-graph sketching framework for inflence dynamics in networks. The central of our sketching framework, called SKIS, is an efficient importance sampling algorithm that returns only non-singular reverse cascades in the network. Comparing to previously developed sketches like RIS and SKIM, our sketch significantly enhances estimation quality while substantially reducing processing time and memory-footprint. Further, we present general strategies of using SKIS to enhance existing algorithms for influence estimation and influence maximization which are motivated by practical applications like viral marketing. Using SKIS, we design high-quality influence oracle for seed sets with average estimation error up to 10x times smaller than those using RIS and 6x times smaller than SKIM. In addition, our influence maximization using SKIS substantially improves the quality of solutions for greedy algorithms. It achieves up to 10x times speed-up and 4x memory reduction for the fastest RIS-based DSSA algorithm, while maintaining the same theoretical guarantees.Comment: 12 pages, to appear in ICDM 2017 as a regular pape

    Big Networks: Analysis and Optimal Control

    Get PDF
    The study of networks has seen a tremendous breed of researches due to the explosive spectrum of practical problems that involve networks as the access point. Those problems widely range from detecting functionally correlated proteins in biology to finding people to give discounts and gain maximum popularity of a product in economics. Thus, understanding and further being able to manipulate/control the development and evolution of the networks become critical tasks for network scientists. Despite the vast research effort putting towards these studies, the present state-of-the-arts largely either lack of high quality solutions or require excessive amount of time in real-world `Big Data\u27 requirement. This research aims at affirmatively boosting the modern algorithmic efficiency to approach practical requirements. That is developing a ground-breaking class of algorithms that provide simultaneously both provably good solution qualities and low time and space complexities. Specifically, I target the important yet challenging problems in the three main areas: Information Diffusion: Analyzing and maximizing the influence in networks and extending results for different variations of the problems. Community Detection: Finding communities from multiple sources of information. Security and Privacy: Assessing organization vulnerability under targeted-cyber attacks via social networks

    The Solution Distribution of Influence Maximization: A High-level Experimental Study on Three Algorithmic Approaches

    Full text link
    Influence maximization is among the most fundamental algorithmic problems in social influence analysis. Over the last decade, a great effort has been devoted to developing efficient algorithms for influence maximization, so that identifying the ``best'' algorithm has become a demanding task. In SIGMOD'17, Arora, Galhotra, and Ranu reported benchmark results on eleven existing algorithms and demonstrated that there is no single state-of-the-art offering the best trade-off between computational efficiency and solution quality. In this paper, we report a high-level experimental study on three well-established algorithmic approaches for influence maximization, referred to as Oneshot, Snapshot, and Reverse Influence Sampling (RIS). Different from Arora et al., our experimental methodology is so designed that we examine the distribution of random solutions, characterize the relation between the sample number and the actual solution quality, and avoid implementation dependencies. Our main findings are as follows: 1. For a sufficiently large sample number, we obtain a unique solution regardless of algorithms. 2. The average solution quality of Oneshot, Snapshot, and RIS improves at the same rate up to scaling of sample number. 3. Oneshot requires more samples than Snapshot, and Snapshot requires fewer but larger samples than RIS. We discuss the time efficiency when conditioning Oneshot, Snapshot, and RIS to be of identical accuracy. Our conclusion is that Oneshot is suitable only if the size of available memory is limited, and RIS is more efficient than Snapshot for large networks; Snapshot is preferable for small, low-probability networks.Comment: To appear in SIGMOD 202

    DySuse: Susceptibility Estimation in Dynamic Social Networks

    Full text link
    Influence estimation aims to predict the total influence spread in social networks and has received surged attention in recent years. Most current studies focus on estimating the total number of influenced users in a social network, and neglect susceptibility estimation that aims to predict the probability of each user being influenced from the individual perspective. As a more fine-grained estimation task, susceptibility estimation is full of attractiveness and practical value. Based on the significance of susceptibility estimation and dynamic properties of social networks, we propose a task, called susceptibility estimation in dynamic social networks, which is even more realistic and valuable in real-world applications. Susceptibility estimation in dynamic networks has yet to be explored so far and is computationally intractable to naively adopt Monte Carlo simulation to obtain the results. To this end, we propose a novel end-to-end framework DySuse based on dynamic graph embedding technology. Specifically, we leverage a structural feature module to independently capture the structural information of influence diffusion on each single graph snapshot. Besides, {we propose the progressive mechanism according to the property of influence diffusion,} to couple the structural and temporal information during diffusion tightly. Moreover, a self-attention block {is designed to} further capture temporal dependency by flexibly weighting historical timestamps. Experimental results show that our framework is superior to the existing dynamic graph embedding models and has satisfactory prediction performance in multiple influence diffusion models.Comment: This paper has been published in Expert Systems With Application

    Generalized Partial Directed Coherence and centrality measures in brain networks for epileptogenic focus localization

    Get PDF
    Accurate epileptogenic focus localization is required prior to surgical resection of brain tissue for treatment of patients with intractable temporal lobe epilepsy, a clinical need that is partially fulfilled to date through a subjective, and at times inconclusive, evaluation of the recorded electroencephalogram (EEG). Using brain connectivity analysis, patterns of causal interactions between brain regions were derived from multichannel EEG of 127 seizures in nine patients with focal, temporal lobe epilepsy (TLE). The statistically significant directed interactions in the reconstructed brain networks were estimated from three second intracranial multi-electrode EEG segments using the Generalized Partial Directed Coherence (GPDC) and validated by surrogate data analysis. A set of centralities per network node were then estimated. Compared to extra-focal brain regions, regions located anatomically within the epileptogenic focus (focal regions) were found to be associated with enhanced inward directed centrality values at high frequencies (y band) during the initial segments of seizures (within nine seconds from seizures onset) and led to correct localization of the epileptogenic focus in all nine patients. Therefore, an immediate application of the employed novel network framework of analysis to intracranial EEG recordings may lead to a computerized, accurate and objective localization of the epileptogenic focus from ictal periods. The proposed framework could also pave the way for studies into network dynamics of the epileptogenic focus peri-ictally and interictally, which may have a significant impact on current automated seizure prediction and control applications
    corecore