45,184 research outputs found

    Output-feedback online optimal control for a class of nonlinear systems

    Full text link
    In this paper an output-feedback model-based reinforcement learning (MBRL) method for a class of second-order nonlinear systems is developed. The control technique uses exact model knowledge and integrates a dynamic state estimator within the model-based reinforcement learning framework to achieve output-feedback MBRL. Simulation results demonstrate the efficacy of the developed method

    Robust sliding mode‐based extremum‐seeking controller for reaction systems via uncertainty estimation approach

    Get PDF
    "This paper deals with the design of a robust sliding mode‐based extremum‐seeking controller aimed at the online optimization of a class of uncertain reaction systems. The design methodology is based on an input–output linearizing method with variable‐structure feedback, such that the closed‐loop system converges to a neighborhood of the optimal set point with sliding mode motion. In contrast with previous extremum‐seeking control algorithms, the control scheme includes a dynamic modelling‐error estimator to compensate for unknown terms related with model uncertainties and unmeasured disturbances. The proposed online optimization scheme does not make use of a dither signal or a gradient‐based optimization algorithm. Practical stabilizability for the closed‐loop system around to the unknown optimal set point is analyzed. Numerical experiments for two nonlinear processes illustrate the effectiveness of the proposed robust control scheme.

    Robust H-infinity Output Feedback Control for Nonlinear Systems

    Get PDF
    The study of robust nonlinear control has attracted increasing interest over the last few years. Progress has been aided by the recent extension of the linear quadratic results which links the theories of L2 gain control (nonlinear H∞ control), differential games, and stochastic risk sensitive control. In fact, significant advances in both linear and nonlinear H∞ theory have drawn upon results from the theories of differential games and stochastic risk sensitive control. Despite these advances in H∞ control theory, practical controllers for complex nonlinear systems which operate on basic H∞ principles have not been realized to date. Issues of importance to the design of a practical controller include (i) computational complexity, (ii) operation solely with observable quantities, and (iii) implementability in finite time. In this dissertation we offer a design procedure which yields, practical and implementable H∞ controllers and meets the, mandate of the above issues for general nonlinear systems. In particular, we develop a well defined and realistically implementable procedure for designing robust output feedback controllers for a large class of nonlinear systems. We analyze this problem in both continuous time and discrete time settings. The robust output feedback control problem is formulated as a dynamic game problem. The solution to the game is obtained by transforming the problem into an equivalent full state feedback problem where the new state is called the information state. The information state method provides a separated control policy which involves the solution of a forward and a backward dynamic programming equation. Obtained from the forward equation is the information state, and from the backward equation is the value function of the game and the optimal information state control. The computer implementation of the information state controller is addressed and several approximations are introduced. The approximations are designed to decrease the online computational complexity of controller

    Robust model predictive control for linear systems subject to norm-bounded model Uncertainties and Disturbances: An Implementation to industrial directional drilling system

    Get PDF
    Model Predictive Control (MPC) refers to a class of receding horizon algorithms in which the current control action is computed by solving online, at each sampling instant, a constrained optimization problem. MPC has been widely implemented within the industry, due to its ability to deal with multivariable processes and to explicitly consider any physical constraints within the optimal control problem in a straightforward manner. However, the presence of uncertainty, whether in the form of additive disturbances, state estimation error or plant-model mismatch, and the robust constraints satisfaction and stability, remain an active area of research. The family of predictive control algorithms, which explicitly take account of process uncertainties/disturbances whilst guaranteeing robust constraint satisfaction and performance is referred to as Robust MPC (RMPC) schemes. In this thesis, RMPC algorithms based on Linear Matrix Inequality (LMI) optimization are investigated, with the overall aim of improving robustness and control performance, while maintaining conservativeness and computation burden at low levels. Typically, the constrained RMPC problem with state-feedback parameterizations is nonlinear (and nonconvex) with a prohibitively high computational burden for online implementation. To remedy this issue, a novel approach is proposed to linearize the state-feedback RMPC problem, with minimal conservatism, through the use of semidefinite relaxation techniques and the Elimination Lemma. The proposed algorithm computes the state-feedback gain and perturbation online by solving an LMI optimization that, in comparison to other schemes in the literature is shown to have a substantially reduced computational burden without adversely affecting the tracking performance of the controller. In the case that only (noisy) output measurements are available, an output-feedback RMPC algorithm is also derived for norm-bounded uncertain systems. The novelty lies in the fact that, instead of using an offline estimation scheme or a fixed linear observer, the past input/output data is used within a Robust Moving Horizon Estimation (RMHE) scheme to compute (tight) bounds on the current state. These current state bounds are then used within the RMPC control algorithm. To reduce conservatism, the output-feedback control gain and control perturbation are both explicitly considered as decision variables in the online LMI optimization. Finally, the aforementioned robust control strategies are applied in an industrial directional drilling configuration and their performance is illustrated by simulations. A rotary steerable system (RSS) is a drilling technology that has been extensively studied over the last 20 years in hydrocarbon exploration and is used to drill complex curved borehole trajectories. RSSs are commonly treated as dynamic robotic actuator systems, driven by a reference signal and typically controlled by using a feedback loop control law. However, due to spatial delays, parametric uncertainties, and the presence of disturbances in such an unpredictable working environment, designing such control laws is not a straightforward process. Furthermore, due to their inherent delayed feedback, described by delay differential equations (DDE), directional drilling systems have the potential to become unstable given the requisite conditions. To address this problem, a simplified model described by ordinary differential equations (ODE) is first proposed, and then taking into account disturbances and system uncertainties that arise from design approximations, the proposed RMPC algorithm is used to automate the directional drilling system.Open Acces
    corecore