6,476 research outputs found

    Weighted p-bits for FPGA implementation of probabilistic circuits

    Full text link
    Probabilistic spin logic (PSL) is a recently proposed computing paradigm based on unstable stochastic units called probabilistic bits (p-bits) that can be correlated to form probabilistic circuits (p-circuits). These p-circuits can be used to solve problems of optimization, inference and also to implement precise Boolean functions in an "inverted" mode, where a given Boolean circuit can operate in reverse to find the input combinations that are consistent with a given output. In this paper we present a scalable FPGA implementation of such invertible p-circuits. We implement a "weighted" p-bit that combines stochastic units with localized memory structures. We also present a generalized tile of weighted p-bits to which a large class of problems beyond invertible Boolean logic can be mapped, and how invertibility can be applied to interesting problems such as the NP-complete Subset Sum Problem by solving a small instance of this problem in hardware

    Harmonic Analysis of Boolean Networks: Determinative Power and Perturbations

    Get PDF
    Consider a large Boolean network with a feed forward structure. Given a probability distribution on the inputs, can one find, possibly small, collections of input nodes that determine the states of most other nodes in the network? To answer this question, a notion that quantifies the determinative power of an input over the states of the nodes in the network is needed. We argue that the mutual information (MI) between a given subset of the inputs X = {X_1, ..., X_n} of some node i and its associated function f_i(X) quantifies the determinative power of this set of inputs over node i. We compare the determinative power of a set of inputs to the sensitivity to perturbations to these inputs, and find that, maybe surprisingly, an input that has large sensitivity to perturbations does not necessarily have large determinative power. However, for unate functions, which play an important role in genetic regulatory networks, we find a direct relation between MI and sensitivity to perturbations. As an application of our results, we analyze the large-scale regulatory network of Escherichia coli. We identify the most determinative nodes and show that a small subset of those reduces the overall uncertainty of the network state significantly. Furthermore, the network is found to be tolerant to perturbations of its inputs

    IEEE Access Special Section Editorial: Recent Advances on Hybrid Complex Networks: Analysis and Control

    Get PDF
    Complex networks typically involve multiple disciplines due to network dynamics and their statistical nature. When modeling practical networks, both impulsive effects and logical dynamics have recently attracted increasing attention. Hence, it is of interest and importance to consider hybrid complex networks with impulsive effects and logical dynamics. Relevant research is prevalent in cells, ecology, social systems, and communication engineering. In hybrid complex networks, numerous nodes are coupled through networks and their properties usually lead to complex dynamic behaviors, including discrete and continuous dynamics with finite values of time and state space. Generally, continuous and discrete sections of the systems are described by differential and difference equations, respectively. Logical networks are used to model the systems where time and state space take finite values. Although interesting results have been reported regarding hybrid complex networks, the analysis methods and relevant results could be further improved with respect to conservative impulsive delay inequalities and reproducibility of corresponding stability or synchronization criteria. Therefore, it is necessary to devise effective approaches to improve the analysis method and results dealing with hybrid complex networks

    Double Deep-Q Learning-Based Output Tracking of Probabilistic Boolean Control Networks

    Get PDF
    In this article, a reinforcement learning (RL)-based scalable technique is presented to control the probabilistic Boolean control networks (PBCNs). In particular, a double deep- QQ network (DD QNQ\text{N} ) approach is firstly proposed to address the output tracking problem of PBCNs, and optimal state feedback controllers are obtained such that the output of PBCNs tracks a constant as well as a time-varying reference signal. The presented method is model-free and offers scalability, thereby provides an efficient way to control large-scale PBCNs that are a natural choice to model gene regulatory networks (GRNs). Finally, three PBCN models of GRNs including a 16-gene and 28-gene networks are considered to verify the presented results
    corecore