3,767 research outputs found

    Multiplex PI-Control for Consensus in Networks of Heterogeneous Linear Agents

    Get PDF
    In this paper, we propose a multiplex proportional-integral approach, for solving consensus problems in networks of heterogeneous nodes dynamics affected by constant disturbances. The proportional and integral actions are deployed on two different layers across the network, each with its own topology. Sufficient conditions for convergence are derived that depend upon the structure of the network, the parameters characterizing the control layers and the node dynamics. The effectiveness of the theoretical results is illustrated using a power network model as a representative example.Comment: 13 pages, 6 Figures, Preprint submitted to Automatic

    Multilayer proportional-integral consensus of heterogeneous multi-agent systems

    Get PDF
    A distributed proportional-integral multilayer strategy is proposed, to achieve consensus in networks of heterogeneous first-order linear systems. The closed-loop network can be seen as an instance of so-called multiplex networks currently studied in network science. The strategy is able to guarantee consensus, even in the presence of constant disturbances and heterogeneous node dynamics. Contrary to previous approaches in the literature, the proportional and integral actions are deployed here on two different layers across the network, each with its own topology. Explicit expressions for the consensus values are obtained together with sufficient conditions guaranteeing convergence. The effectiveness of the theoretical results are illustrated via numerical simulations using a power network example

    Multilayer proportional-integral consensus of heterogeneous multi-agent systems

    Get PDF
    A distributed proportional-integral multilayer strategy is proposed, to achieve consensus in networks of heterogeneous first-order linear systems. The closed-loop network can be seen as an instance of so-called multiplex networks currently studied in network science. The strategy is able to guarantee consensus, even in the presence of constant disturbances and heterogeneous node dynamics. Contrary to previous approaches in the literature, the proportional and integral actions are deployed here on two different layers across the network, each with its own topology. Explicit expressions for the consensus values are obtained together with sufficient conditions guaranteeing convergence. The effectiveness of the theoretical results are illustrated via numerical simulations using a power network example

    Network Identification for Diffusively-Coupled Systems with Minimal Time Complexity

    Full text link
    The theory of network identification, namely identifying the (weighted) interaction topology among a known number of agents, has been widely developed for linear agents. However, the theory for nonlinear agents using probing inputs is less developed and relies on dynamics linearization. We use global convergence properties of the network, which can be assured using passivity theory, to present a network identification method for nonlinear agents. We do so by linearizing the steady-state equations rather than the dynamics, achieving a sub-cubic time algorithm for network identification. We also study the problem of network identification from a complexity theory standpoint, showing that the presented algorithms are optimal in terms of time complexity. We also demonstrate the presented algorithm in two case studies.Comment: 12 pages, 3 figure

    Design and Experimental Verification of Robust Motion Synchronization Control with Integral Action

    Get PDF
    A robust attitude motion synchronization problem is investigated for multiple 3-degrees-of-freedom (3-DOF) helicopters with input disturbances. The communication topology among the helicopters is modeled by a directed graph, and each helicopter can only access the angular position measurements of itself and its neighbors. The desired trajectories are generated online and not accessible to all helicopters. The problem is solved by embedding in each helicopter some finite-time convergent (FTC) estimators and a distributed controller with integral action. The FTC estimators generate the estimates of desired angular acceleration and the derivative of the local neighborhood synchronization errors. The distributed controller stabilizes the tracking errors and attenuates the effects of input disturbances. The conditions under which the tracking error of each helicopter converges asymptotically to zero are identified, and, for the cases with nonzero tracking errors, some inequalities are derived to show the relationship between the ultimate bounds of tracking errors and the design parameters. Simulation and experimental results are presented to demonstrate the performance of the controllers
    • …
    corecore