53 research outputs found

    Delay-Adaptive Control of First-order Hyperbolic PIDEs

    Full text link
    We develop a delay-adaptive controller for a class of first-order hyperbolic partial integro-differential equations (PIDEs) with an unknown input delay. By employing a transport PDE to represent delayed actuator states, the system is transformed into a transport partial differential equation (PDE) with unknown propagation speed cascaded with a PIDE. A parameter update law is designed using a Lyapunov argument and the infinite-dimensional backstepping technique to establish global stability results. Furthermore, the well-posedness of the closed-loop system is analyzed. Finally, the effectiveness of the proposed method was validated through numerical simulation

    Robust stabilization of 2×22 \times 2 first-order hyperbolic PDEs with uncertain input delay

    Full text link
    A backstepping-based compensator design is developed for a system of 2×22\times2 first-order linear hyperbolic partial differential equations (PDE) in the presence of an uncertain long input delay at boundary. We introduce a transport PDE to represent the delayed input, which leads to three coupled first-order hyperbolic PDEs. A novel backstepping transformation, composed of two Volterra transformations and an affine Volterra transformation, is introduced for the predictive control design. The resulting kernel equations from the affine Volterra transformation are two coupled first-order PDEs and each with two boundary conditions, which brings challenges to the well-posedness analysis. We solve the challenge by using the method of characteristics and the successive approximation. To analyze the sensitivity of the closed-loop system to uncertain input delay, we introduce a neutral system which captures the control effect resulted from the delay uncertainty. It is proved that the proposed control is robust to small delay variations. Numerical examples illustrate the performance of the proposed compensator

    Boundary control and observation of coupled parabolic PDEs

    Get PDF
    Reaction-diffusion equations are parabolic Partial Differential Equations (PDEs) which often occur in practice, e.g., to model the concentration of one or more substances, distributed in space, under the in uence of different phenomena such as local chemical reactions, in which the substances are transformed into each other, and diffusion, which causes the substances to spread out over a surface in space. Certainly, reaction-diffusion PDEs are not confined to chemical applications but they also describe dynamical processes of non-chemical nature, with examples being found in thermodynamics, biology, geology, physics, ecology, etc. Problems such as parabolic Partial Differential Equations (PDEs) and many others require the user to have a considerable background in PDEs and functional analysis before one can study the control design methods for these systems, particularly boundary control design. Control and observation of coupled parabolic PDEs comes in roughly two settingsdepending on where the actuators and sensors are located \in domain" control, where the actuation penetrates inside the domain of the PDE system or is evenly distributed everywhere in the domain and \boundary" control, where the actuation and sensing are applied only through the boundary conditions. Boundary control is generally considered to be physically more realistic because actuation and sensing are nonintrusive but is also generally considered to be the harder problem, because the \input operator" and the "output operator" are unbounded operators. The method that this thesis develops for control of PDEs is the so-called backstepping control method. Backstepping is a particular approach to stabilization of dynamic systems and is particularly successful in the area of nonlinear control. The backstepping method achieves Lyapunov stabilization, which is often achieved by collectively shifting all the eigenvalues in a favorable direction in the complex plane, rather than by assigning individual eigenvalues. As the reader will soon learn, this task can be achieved in a rather elegant way, where the control gains are easy to compute symbolically, numerically, and in some cases even explicitly. In addition to presenting the methods for boundary control design, we present the dual methods for observer design using boundary sensing. Virtually every one of our control designs for full state stabilization has an observer counterpart. The observer gains are easy to compute symbolically or even explicitly in some cases. They are designed in such a way that the observer error system is exponentially stabilized. As in the case of finite-dimensional observer-based control, a separation principle holds in the sense that a closed-loop system remains stable after a full state stabilizing feedback is replaced by a feedback that employs the observer state instead of the plant state

    Boundary control of parabolic PDE using adaptive dynamic programming

    Get PDF
    In this dissertation, novel adaptive/approximate dynamic programming (ADP) based state and output feedback control methods are presented for distributed parameter systems (DPS) which are expressed as uncertain parabolic partial differential equations (PDEs) in one and two dimensional domains. In the first step, the output feedback control design using an early lumping method is introduced after model reduction. Subsequently controllers were developed in four stages; Unlike current approaches in the literature, state and output feedback approaches were designed without utilizing model reduction for uncertain linear, coupled nonlinear and two-dimensional parabolic PDEs, respectively. In all of these techniques, the infinite horizon cost function was considered and controller design was obtained in a forward-in-time and online manner without solving the algebraic Riccati equation (ARE) or using value and policy iterations techniques. Providing the stability analysis in the original infinite dimensional domain was a major challenge. Using Lyapunov criterion, the ultimate boundedness (UB) result was demonstrated for the regulation of closed-loop system using all the techniques developed herein. Moreover, due to distributed and large scale nature of state space, pure state feedback control design for DPS has proven to be practically obsolete. Therefore, output feedback design using limited point sensors in the domain or at boundaries are introduced. In the final two papers, the developed state feedback ADP control method was extended to regulate multi-dimensional and more complicated nonlinear parabolic PDE dynamics --Abstract, page iv

    Boundary time-varying feedbacks for fixed-time stabilization of constant-parameter reaction-diffusion systems

    Get PDF
    International audienceIn this paper, the problem of fixed-time stabilization of constant-parameter reaction-diffusion partial differential equations by means of continuous boundary time-varying feedbacks is considered. Moreover, the time of convergence can be prescribed in the design. The design of time-varying feedbacks is carried out based on the backstepping approach. Using a suitable target system with a time varying-coefficient, one can state that the resulting kernel of the backstepping transformation is time-varying and rendering the control feedback to be time-varying as well. Explicit representations of the kernel solution in terms of generalized Laguerre polynomials and modified Bessel functions are derived. The fixed-time stability property is then proved. A simulation example is presented to illustrate the main results

    Моделювання, керування та інформаційні технології

    Get PDF
    Aniksuhyn A., Zhyvolovych O. Generalized solvability and optimal control for an integro-differential equation of a hyperbolic type 8 Babudzhan R., Isaienkov K., Krasii D., Melkonian R., Vodka O., Zadorozhniy I. Collection and processing of bearing vibration data for their technical condition classification by machine learning methods 10 Bardan A., Bihun Y. Computer modeling of differential games . 16 Beridze Z., Shavadze Ju., Imnaishvili G., Geladze M. Concept and functions of building a private network (VPN) 19 Bomba A., Klymiuk Y. Computer prediction of technological modes of rapid cone shaped adsorption filters with automated discharge of part of heat from separation surfaces in filtering model 21 Boyko N., Dypko O. Analysis of machine learning methods using spam filtering 25 Boyko N., Kulchytska O. Analysis of tumor classification algorithms for breast cancer prediction by machine learning methods 29 Denysov S., Semenov V., Vedel Ya. A novel adaptive method for operator inclusions 33 Didmanidze M., Chachanidze G., Didmanidze T. Modern trends in unemployment . 36 Bagrationi I., Zaslavski V., Didmanidze I., Yamkova O. Ethics of information technology in the context of a global worldview . 38 Didmanidze D., Zoidze K., Akhvlediani N., Tsitskishvili G., Samnidze N., Diasamidze M. Use of computer teaching systems in the learning process . 42 Dobrydnyk Yu., Khrystyuk A. Analysis of the elevator as an object of automation 44 Gamzayev R., Shkoda B. Development and investigation of adaptive micro-service architecture for messaging software systems . 46 Gayev Ye. Student' own discoveries in information theory curriculum 50 Didmanidze I., Geladze D., Motskobili Ia, Akhvlediani D., Koridze L. Follow digitally by using a blog . 52 Kirpichnikov A., Khrystyuk A. Automatic apiary care system 54 Kunytskyi S., Ivanchuk N. Mathematical modeling of water purification in a bioplato filter 56 Kyrylych V., Milchenko O. Optimal control of a hyperbolic system that describes Slutsky demand . 58 6 Makaradze N., Nakashidze-Makharadze T., Zaslavski V., Gurgenidze M., Samnidze N., Diasamidze M. Challenges of using computer-based educational technologies in higher education 60 Mamenko P., Zinchenko S., Nosov P., Kyrychenko K., Popovych I., Nahrybelnyi Ya., Kobets V. Research of divergence trajectory with a given risk of ships collisions . 64 Mateichuk V., Zinchenko S., Tovstokoryi O., Nosov P., Nahrybelnyi Ya., Popovych I., Kobets V. Automatic vessel control in stormy conditions 68 Petrivskyi Ya., Petrivskyi V., Bychkov O., Pyzh O. Some features of creating a computer vision system 72 Poliakov V. Calculation of organic substrate decomposition in biofilm and bioreactor-filter taking into account its limitation and inhibition 75 Poliakov V. Mathematical modeling of suspension filtration on a rapid filter at an unregulated rate 78 Prokip V. On the semi-scalar equivalence of polynomial matrices 80 Pysarchuk O., Mironov Y. A proposal of algorithm for automated chromosomal abnormality detection . 83 Rybak O., Tarasenko S. Sperner’s Theorem . 87 Sandrakov G., Hulianytskyi A., Semenov V. Modeling of filtration processes in periodic porous media 90 Stepanets O., Mariiash Yu. Optimal control of the blowing mode parameters during basic oxygen furnace steelmaking process . 94 Stepanchenko O., Shostak L., Kozhushko O., Moshynskyi V., Martyniuk P. Modelling soil organic carbon turnover with assimilation of satellite soil moisture data 97 Vinnychenko D., Nazarova N., Vinnychenko I. The dependence of the deviation of the output stabilized current of the resonant power supply during frequency control in the systems of materials pulse processing 100 Voloshchuk V., Nekrashevych O., Gikalo P. Exergy analysis of a reversible chiller 105 Шарко О., Петрушенко Н., Мосін М., Шарко М., Василенко Н., Белоусов А. Інформаційно-керуючі системи та технології оцінки ступеня підготовленості підприємств до інноваційної діяльності за допомогою ланцюгів Маркова . 107 Барановський С., Бомба А., Прищепа О. Модифікація моделі інфекційного захворювання для урахування дифузійних збурень в умовах логістичної динаміки 110 Бомба А., Бойчура М., Мічута О. Ідентифікація параметрів структури ґрунтових криволінійних масивів числовими методами квазіконформних відображень . 112 Василець К. Метод оцінювання невизначеності вимірювання електроенергії вузлом комерційного обліку 114 Волощук В., Некрашевич О., Гікало П. Доцільність застосування критеріїв ексергетичного аналізу для оцінювання ефективності об'єктів теплоенергетики . 117 Гудь В. Математичне моделювання енергетичної ефективності постійних магнітів в циліндричних магнітних системах . 120 Демидюк М. Параметрична оптимізація циклічних транспортних операцій маніпуляторів з активними і пасивними приводами 122 Клепач М., Клепач М. Вейвлет аналіз температурних трендів днища скловарної печі 125 Козирєв С. Керування високовольтним імпульсним розрядом в екзотермічному середовищі . 127 Очко О., Аврука І. Безпечне збереження конфіденційної інформації на серверах . 131 Реут Д., Древецький В., Матус С. Застосування комп’ютерного зору для автоматичного вимірювання швидкості рідин з тонкодисперсними домішками 133 Сафоник А., Грицюк І. Розроблення інформаційної системи для спектрофотометричного аналізу . 135 Ткачук В. Квантовий генетичний алгоритм та його реалізація на квантовому компютері 137 Цвєткова Т. Комп’ютерна візуалізація гідродинамічного поля в області зкриволінійними межами 140 Шпортько О., Бомба А., Шпортько Л. Пристосування словникових методів компресії до прогресуючого ієрархічного стиснення зображень без втрат . 142 Сафоник А., Таргоній І. Розробка системи керування напруженістю магнітного поля для процесу знезалізнення технологічних вод . 14
    corecore