192 research outputs found

    Output feedback stabilization of the Korteweg-de Vries equation

    No full text
    International audienceThis paper presents an output feedback control law for the Korteweg-de Vries equation. The control design is based on the backstepping method and the introduction of an appropriate observer. The local exponential stability of the closed-loop system is proven. Some numerical simulations are shown to illustrate this theoretical result

    Stabilization of a linear Korteweg-de Vries equation with a saturated internal control

    Full text link
    This article deals with the design of saturated controls in the context of partial differential equations. It is focused on a linear Korteweg-de Vries equation, which is a mathematical model of waves on shallow water surfaces. In this article, we close the loop with a saturating input that renders the equation nonlinear. The well-posedness is proven thanks to the nonlinear semigroup theory. The proof of the asymptotic stability of the closed-loop system uses a Lyapunov function.Comment: European Control Conference, Jul 2015, Linz, Austri

    Global stabilization of a Korteweg-de Vries equation with saturating distributed control

    Full text link
    This article deals with the design of saturated controls in the context of partial differential equations. It focuses on a Korteweg-de Vries equation, which is a nonlinear mathematical model of waves on shallow water surfaces. Two different types of saturated controls are considered. The well-posedness is proven applying a Banach fixed point theorem, using some estimates of this equation and some properties of the saturation function. The proof of the asymptotic stability of the closed-loop system is separated in two cases: i) when the control acts on all the domain, a Lyapunov function together with a sector condition describing the saturating input is used to conclude on the stability, ii) when the control is localized, we argue by contradiction. Some numerical simulations illustrate the stability of the closed-loop nonlinear partial differential equation. 1. Introduction. In recent decades, a great effort has been made to take into account input saturations in control designs (see e.g [39], [15] or more recently [17]). In most applications, actuators are limited due to some physical constraints and the control input has to be bounded. Neglecting the amplitude actuator limitation can be source of undesirable and catastrophic behaviors for the closed-loop system. The standard method to analyze the stability with such nonlinear controls follows a two steps design. First the design is carried out without taking into account the saturation. In a second step, a nonlinear analysis of the closed-loop system is made when adding the saturation. In this way, we often get local stabilization results. Tackling this particular nonlinearity in the case of finite dimensional systems is already a difficult problem. However, nowadays, numerous techniques are available (see e.g. [39, 41, 37]) and such systems can be analyzed with an appropriate Lyapunov function and a sector condition of the saturation map, as introduced in [39]. In the literature, there are few papers studying this topic in the infinite dimensional case. Among them, we can cite [18], [29], where a wave equation equipped with a saturated distributed actuator is studied, and [12], where a coupled PDE/ODE system modeling a switched power converter with a transmission line is considered. Due to some restrictions on the system, a saturated feedback has to be designed in the latter paper. There exist also some papers using the nonlinear semigroup theory and focusing on abstract systems ([20],[34],[36]). Let us note that in [36], [34] and [20], the study of a priori bounded controller is tackled using abstract nonlinear theory. To be more specific, for bounded ([36],[34]) and unbounded ([34]) control operators, some conditions are derived to deduce, from the asymptotic stability of an infinite-dimensional linear system in abstract form, the asymptotic stability when closing the loop with saturating controller. These articles use the nonlinear semigroup theory (see e.g. [24] or [1]). The Korteweg-de Vries equation (KdV for short)Comment: arXiv admin note: text overlap with arXiv:1609.0144

    Internal rapid stabilization of a 1-D linear transport equation with a scalar feedback

    Get PDF
    We use the backstepping method to study the stabilization of a 1-D linear transport equation on the interval (0, L), by controlling the scalar amplitude of a piecewise regular function of the space variable in the source term. We prove that if the system is controllable in a periodic Sobolev space of order greater than 1, then the system can be stabilized exponentially in that space and, for any given decay rate, we give an explicit feedback law that achieves that decay rate

    Global stabilization of a Korteweg-de Vries equation with a distributed control saturated in L 2 -norm

    No full text
    International audienceThis article deals with the design of saturated controls in the context of partial differential equations. It is focused on a Korteweg-de Vries equation, which is a nonlinear mathematical model of waves on shallow water surfaces. The aim of this article is to study the influence of a saturating in L 2-norm distributed control on the well-posedness and the stability of this equation. The well-posedness is proven applying a Banach fixed point theorem. The proof of the asymptotic stability of the closed-loop system is tackled with a Lyapunov function together with a sector condition describing the saturating input. Some numerical simulations illustrate the stability of the closed-loop nonlinear partial differential equation

    Distributed Control of the Generalized Korteweg-de Vries-Burgers Equation

    Get PDF
    The paper deals with the distributed control of the generalized Kortweg-de Vries-Burgers equation (GKdVB) subject to periodic boundary conditions via the Karhunen-Loève (K-L) Galerkin method. The decomposition procedure of the K-L method is presented to illustrate the use of this method in analyzing the numerical simulations data which represent the solutions to the GKdVB equation. The K-L Galerkin projection is used as a model reduction technique for nonlinear systems to derive a system of ordinary differential equations (ODEs) that mimics the dynamics of the GKdVB equation. The data coefficients derived from the ODE system are then used to approximate the solutions of the GKdVB equation. Finally, three state feedback linearization control schemes with the objective of enhancing the stability of the GKdVB equation are proposed. Simulations of the controlled system are given to illustrate the developed theory
    corecore