343 research outputs found

    Robust H∞ control for a class of nonlinear stochastic systems with mixed time delay

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link - Copyright 2007 Wiley-Blackwell LtdThis paper is concerned with the problem of robust H∞ control for a class of uncertain nonlinear Itô-type stochastic systems with mixed time delays. The parameter uncertainties are assumed to be norm bounded, the mixed time delays comprise both the discrete and distributed delays, and the sector nonlinearities appear in both the system states and delayed states. The problem addressed is the design of a linear state feedback controller such that, in the simultaneous presence of parameter uncertainties, system nonlinearities and mixed time delays, the resulting closed-loop system is asymptotically stable in the mean square and also achieves a prescribed H∞ disturbance rejection attenuation level. By using the Lyapunov stability theory and the Itô differential rule, some new techniques are developed to derive the sufficient conditions guaranteeing the existence of the desired feedback controllers. A unified linear matrix inequality is proposed to deal with the problem under consideration and a numerical example is exploited to show the usefulness of the results obtained.This work was funded by the Engineering and Physical Sciences Research Council Grant Number: GR/S27658/01, Nuffield Foundation. Grant Number: NAL/00630/G, Alexander von Humboldt Foundation, National Natural Science Foundation of Jiangsu Education Committee of China Grant Number: 06KJD110206, National Natural Science Foundation Grant Numbers: 10471119, 10671172, Scientific Innovation Fund of Yangzhou University of China. Grant Number: 2006CXJ002

    Robust H∞ control of uncertain Markovian jump systems with time-delay

    Get PDF
    This correspondence is concerned with the robust stochastic stabilizability and robust H∞ disturbance attenuation for a class of uncertain linear systems with time delay and randomly jumping parameters The transition of the jumping parameters is governed by a finite-state Markov process. Sufficient conditionson the existence of a robust stochastic stabilizing and γ-suboptimal H∞ state-feedback controller are presented using the Lyapunov functional approach. It isshown that a robust stochastically stabilizing H∞ state-feedback controller can be constructed through the numerical solution of a set of coupled linear matrix inequalities. © 2000 IEEE.published_or_final_versio

    Robust H∞ control of networked control systems with access constraints and packet dropouts

    No full text
    We consider a class of networked control systems (NCSs) where the plant has time-varying norm-bounded parameter uncertainties, the network only provides a limited number of simultaneous accesses for the sensors and actuators, and the packet dropouts occur randomly in the network. For this class of NCSs with uncertainties and access constraints as well as packet dropouts, we derive sufficient conditions in the form of linear matrix inequalities that guarantee robust stochastic stabilisation and synthesis of H∞ controller. An example is provided to illustrate our proposed method

    Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey

    Get PDF
    Copyright © 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany
    corecore