14,474 research outputs found

    Synchronous response modelling and control of an annular momentum control device

    Get PDF
    Research on the synchronous response modelling and control of an advanced Annular Momentun Control Device (AMCD) used to control the attitude of a spacecraft is described. For the flexible rotor AMCD, two sources of synchronous vibrations were identified. One source, which corresponds to the mass unbalance problem of rigid rotors suspended in conventional bearings, is caused by measurement errors of the rotor center of mass position. The other sources of synchronous vibrations is misalignment between the hub and flywheel masses of the AMCD. Four different control algorithms were examined. These were lead-lag compensators that mimic conventional bearing dynamics, tracking notch filters used in the feedback loop, tracking differential-notch filters, and model-based compensators. The tracking differential-notch filters were shown to have a number of advantages over more conventional approaches for both rigid-body rotor applications and flexible rotor applications such as the AMCD. Hardware implementation schemes for the tracking differential-notch filter were investigated. A simple design was developed that can be implemented with analog multipliers and low bandwidth, digital hardware

    A Study on the Control of Third Generation Spacecraft

    Get PDF
    An overview of some studies which have recently been carried out on the control of third generation spcecraft, as modelled by the MSAT space vehicle configuration, is made. This spacecraft is highly nonsymmetrical and has appendages which cannot in general be assumed to be rigid. In particular, it is desired to design a controller for MSAT which stabilizes the system and satisfies certain attitude control, shape control, and possibly stationkeeping requirements; in addition, it is desired that the resultant controller should be robust and avoid any undesirable spill over effects. In addition, the controller obtained should have minimum complexity. The method of solution adopted to solve this class of problems is to formulate the problem as a robust servomechanism problem, and thence to obtain existence conditions and a controller characterization to solve the problem. The final controller obtained for MSAT has a distributed control configuration and appears to be quite satisfactory

    Description and simulation of an integrated power and attitude control system concept for space-vehicle application

    Get PDF
    An Integrated Power and Attitude Control System (IPACS) concept with potential application to a broad class of space missions is discussed. A description is given of the basic concept of combining the onboard energy storage and attitude control functions by storing energy in spinning flywheels which are used to provide control torques. A shuttle-launched Research and Applications Module (RAM) A303B solar-observatory mission having stringent pointing requirements (1.0 arc second) is selected to investigate possible interactions between energy storage and attitude control. A simulation of this spacecraft involving actual laboratory-model control-system hardware is presented. Simulation results are discussed which indicate that the IPACS concept, even in a failure-mode configuration, can readily meet the RAM A303B pointing requirements

    Control/structures interaction study of two 300 KW dual-keel space station concepts

    Get PDF
    The results of an investigation of the influence of structural stiffness of the space station framework on the controllability of two 300 kw class, solar dynamic powered, dual-keel space station designs are presented. The two design concepts differed only in the truss bay dimensions of the structural framework of the stations. Two control studies were made: (1) A study of the interaction of the framework structural response with the reaction control system used for attitude control during an orbital reboost maneuver; and (2) A study of the stability of the space station attitude control system with sensors influenced by the elastic deformations of the station framework. Although both configurations had acceptable control characteristics, the configuration with the larger truss bay dimension and its increased structural stiffness had more attractive characteristics for pointing control of the solar dynamic system during reboost and for attitude control during normal in-orbit operations

    Data requirements for in-flight synthesis and multiple blender studies

    Get PDF
    Data requirements for in-flight synthesis and multiple blender studies to improve stability and control of large flexible booster

    Decoupled and linear quadratic regulator control of a large, flexible space antenna with an observer in the control loop

    Get PDF
    An analysis is performed to compare decoupled and linear quadratic regulator (LQR) procedures for the control of a large, flexible space antenna. Control objectives involve: (1) commanding changes in the rigid-body modes, (2) nulling initial disturbances in the rigid-body modes, or (3) nulling initial disturbances in the first three flexible modes. Control is achieved with two three-axis control-moment gyros located on the antenna column. Results are presented to illustrate various effects on control requirements for the two procedures. These effects include errors in the initial estimates of state variables, variations in the type, number, and location of sensors, and deletions of state-variable estimates for certain flexible modes after control activation. The advantages of incorporating a time lag in the control feedback are also illustrated. In addition, the effects of inoperative-control situations are analyzed with regard to control requirements and resultant modal responses. Comparisons are included which show the effects of perfect state feedback with no residual modes (ideal case). Time-history responses are presented to illustrate the various effects on the control procedures

    Integrated controls/structures study of advanced space systems

    Get PDF
    A cost tradeoff is postulated for a stiff structure utilizing minimal controls (and control expense) to point and stabilize the vehicle. Extra costs for a stiff structure are caused by weight, packaging size, etc. Likewise, a more flexible vehicle should result in reduced structural costs but increased costs associated with additional control hardware and data processing required for vibration control of the structure. This tradeoff occurs as the ratio of the control bandwidth required for the mission to the lowest (significant) bending mode of the vehicle. The cost of controlling a spacecraft for a specific mission and the same basic configuration but varying the flexibility is established
    corecore