2,341 research outputs found

    Time-and event-driven communication process for networked control systems: A survey

    Get PDF
    Copyright © 2014 Lei Zou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.In recent years, theoretical and practical research topics on networked control systems (NCSs) have gained an increasing interest from many researchers in a variety of disciplines owing to the extensive applications of NCSs in practice. In particular, an urgent need has arisen to understand the effects of communication processes on system performances. Sampling and protocol are two fundamental aspects of a communication process which have attracted a great deal of research attention. Most research focus has been on the analysis and control of dynamical behaviors under certain sampling procedures and communication protocols. In this paper, we aim to survey some recent advances on the analysis and synthesis issues of NCSs with different sampling procedures (time-and event-driven sampling) and protocols (static and dynamic protocols). First, these sampling procedures and protocols are introduced in detail according to their engineering backgrounds as well as dynamic natures. Then, the developments of the stabilization, control, and filtering problems are systematically reviewed and discussed in great detail. Finally, we conclude the paper by outlining future research challenges for analysis and synthesis problems of NCSs with different communication processes.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374127, and 61374010, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    A distributed networked approach for fault detection of large-scale systems

    Get PDF
    Networked systems present some key new challenges in the development of fault diagnosis architectures. This paper proposes a novel distributed networked fault detection methodology for large-scale interconnected systems. The proposed formulation incorporates a synchronization methodology with a filtering approach in order to reduce the effect of measurement noise and time delays on the fault detection performance. The proposed approach allows the monitoring of multi-rate systems, where asynchronous and delayed measurements are available. This is achieved through the development of a virtual sensor scheme with a model-based re-synchronization algorithm and a delay compensation strategy for distributed fault diagnostic units. The monitoring architecture exploits an adaptive approximator with learning capabilities for handling uncertainties in the interconnection dynamics. A consensus-based estimator with timevarying weights is introduced, for improving fault detectability in the case of variables shared among more than one subsystem. Furthermore, time-varying threshold functions are designed to prevent false-positive alarms. Analytical fault detectability sufficient conditions are derived and extensive simulation results are presented to illustrate the effectiveness of the distributed fault detection technique

    MAS-based Distributed Coordinated Control and Optimization in Microgrid and Microgrid Clusters:A Comprehensive Overview

    Get PDF

    A weighted distributed predictor-feedback control synthesis for interconnected time delay systems

    Full text link
    [EN] The paper investigates the control design of interconnected time delay systems by means of distributed predictor-feedback delay compensation approaches and event-triggered mechanism. The idea behind delay compensation is to counteract the negative effects of delays in the control-loop by feeding back future predictions of the system state. Nevertheless, an exact prediction of the overall system state vector cannot be obtained providing that each system has only knowledge of their local data regarding the system model and state variables. Consequently, predictor-feedback delay compensation may lose effectiveness if the coupling between subsystems is sufficiently strong. To circumvent this drawback, the proposed distributed predictor-feedback control incorporates extra degree of freedom for control synthesis by introducing new weighting factors for each local prediction term. The design of the weighting factors is addressed, together with the event-triggered parameters, by an algorithm based on Linear Matrix Inequalities (LMI) and the Cone Complementarity Linearization (CCL). Simulation results are provided to show the achieved improvements and validate the effectiveness of the proposed method, even in the case that other control strategies fail to stabilize the closed-loop system.This work was supported by projects PGC2018-098719-B-I00 (MCIU/AEI/FEDER, UE), Group DGA T45-17R and Fundacion Universitaria Antonio Gargallo (Project 2018/B004).González Sorribes, A. (2021). A weighted distributed predictor-feedback control synthesis for interconnected time delay systems. Information Sciences. 543(8):367-381. https://doi.org/10.1016/j.ins.2020.07.011S367381543

    A Model-Free Predictive Controller for Networked Microgrids with Random Communication Delays

    Get PDF
    corecore