301 research outputs found

    Output agreement in networks with unmatched disturbances and algebraic constraints

    Get PDF
    This paper considers a problem of output agreement in heterogeneous networks with dynamics on the nodes as well as on the edges. The control and disturbance signals entering the nodal dynamics are "unmatched" meaning that some nodes are only subject to disturbances, and are deprived of actuating signals. To further enrich our model, we accommodate (solvable) algebraic constraints in a subset of nodal dynamics. We show that appropriate dynamic feedback controllers achieve output agreement on a desired vector. We also investigate the case of an optimal steady-state control over the network. The proposed results are applied to a heterogeneous microgrid

    Agreeing in networks:Unmatched disturbances, algebraic constraints and optimality

    Get PDF
    This paper considers a problem of output agreement in heterogeneous networks with dynamics on the nodes as well as on the edges. The control and disturbance signals entering the nodal dynamics are "unmatched" meaning that some nodes are only subject to disturbances and not to the actuating signals. To further enrich our model and motivated by synchronization problems in physical networks, we accommodate (solvable) algebraic constraints resulting in a fairly general and heterogeneous network. It is shown that appropriate dynamic feedback controllers achieve output agreement on a desired vector, in the presence of physical coupling and despite the influence of constant as well as time-varying disturbances. Furthermore, we address the case of an optimal steady-state deployment of the control effort over the network by suitable distributed controllers. As a case study, the proposed results are applied to a heterogeneous microgrid. (C) 2016 Elsevier Ltd. All rights reserved.</p

    Exponential convergence under distributed averaging integral frequency control

    Get PDF
    We investigate the performance and robustness of distributed averaging integral controllers used in the optimal frequency regulation of power networks. We construct a strict Lyapunov function that allows us to quantify the exponential convergence rate of the closed-loop system. As an application, we study the stability of the system in the presence of disruptions to the controllers' communication network, and investigate how the convergence rate is affected by these disruptions. (C) 2018 Elsevier Ltd. All rights reserved

    Optimal generation in structure-preserving power networks with second-order turbine-governor dynamics

    Get PDF
    Recently we have been exploring the role of passivity and the internal model principle in power network control in the presence of uncertainties due to unmeasured demand and supply. In this work we continue this line of research and extend our results to include more complex dynamics at the generation side. Namely, we study frequency stabilization by primary control and frequency regulation by optimal generation control, where we additionally incorporate second-order turbine-governor dynamics. The power network is represented by the structure-preserving Bergen-Hill model [1]. Distributed controllers that require local frequency measurements are proposed and are shown to minimize the generation costs. Asymptotic convergence is proven when the generators satisfy a local matrix condition. The effectiveness of proposed controllers is demonstrated in a case study

    Exponential convergence under distributed averaging integral frequency control

    Get PDF
    We investigate the performance and robustness of distributed averaging integral controllers used in the optimal frequency regulation of power networks. We construct a strict Lyapunov function that allows us to quantify the exponential convergence rate of the closed-loop system. As an application, we study the stability of the system in the presence of disruptions to the controllers' communication network, and investigate how the convergence rate is affected by these disruptions

    A Lyapunov Approach to Control of Microgrids with a Network-Preserved Differential-Algebraic Model

    Get PDF
    We provide sufficient conditions for asymptotic stability and optimal resource allocation for a networkpreserved microgrid model with active and reactive power loads. The model considers explicitly the presence of constantpower loads as well as the coupling between the phase angle and voltage dynamics. The analysis of the resulting nonlinear differential algebraic equation (DAE) system is conducted by leveraging incremental Lyapunov functions, definiteness of the load flow Jacobian and the implicit function theorem
    • …
    corecore