151 research outputs found

    Interference suppression and diversity for CDMA systems

    Get PDF
    In code-division multiple-access (CDMA) systems, due to non-orthogonality of the spreading codes and multipath channels, the desired signal suffers interference from other users. Signal fading due to multipath propagation is another source of impairment in wireless CDMA systems, often severely impacting performance. In this dissertation, reduced-rank minimum mean square error (MMSE) receiver and reduced-rank minimum variance receiver are investigated to suppress interference; transmit diversity is applied to multicarrier CDMA (MC-CDMA) systems to combat fading; packet combing is studied to provide both interference suppression and diversity for CDMA random access systems. The reduced-rank MMSE receiver that uses a reduced-rank estimated covariance matrix is studied to improve the performance of MMSE receiver in CDMA systems. It is shown that the reduced-rank MMSE receiver has much better performance than the full-rank MMSE receiver when the covariance matrix is estimated by using a finite number of data samples and the desired signal is in a low dimensional subspace. It is also demonstrated that the reduced-rank minimum variance receiver outperforms the full-rank minimum variance receiver. The probability density function of the output SNR of the full-rank and reduced-rank linear MMSE estimators is derived for a general linear signal model under the assumption that the signals and noise are Gaussian distributed. Space-time coding that is originally proposed for narrow band systems is applied to an MC-CDMA system in order to get transmit diversity for such a wideband system. Some techniques to jointly decode the space-time code and suppress interference are developed. The channel estimation using either pilot channels or pilot symbols is studied for MC-CDMA systems with space-time coding. Performance of CDMA random access systems with packet combining in fading channels is analyzed. By combining the current retransmitted packet with all its previous transmitted copies, the receiver obtains a diversity gain plus an increased interference and noise suppression gain. Therefore, the bit error rate dramatically decreases with the number of transmissions increasing, which in turn improves the system throughput and reduces the average delay

    Fundamental Limits of Low-Density Spreading NOMA with Fading

    Full text link
    Spectral efficiency of low-density spreading non-orthogonal multiple access channels in the presence of fading is derived for linear detection with independent decoding as well as optimum decoding. The large system limit, where both the number of users and number of signal dimensions grow with fixed ratio, called load, is considered. In the case of optimum decoding, it is found that low-density spreading underperforms dense spreading for all loads. Conversely, linear detection is characterized by different behaviors in the underloaded vs. overloaded regimes. In particular, it is shown that spectral efficiency changes smoothly as load increases. However, in the overloaded regime, the spectral efficiency of low- density spreading is higher than that of dense spreading

    A Robust Adaptive MMSE Rake Receiver for DS-CDMA System in a Fast Multipath Fading Channel

    Get PDF
    In this paper, we propose a robust adaptive minimum mean square error (MMSE) Rake receiver for asynchronous DS-CDMA systems. The receiver uses the modified MMSE criterion that incorporates the differential detection and the amplitude compensation for interference cancellation in a time-varying multipath fading channel. We investigate that the proposed Rake receiver can achieve the higher output signal to interference plus noise ratio (SINR) than the conventional adaptive Rake receiver, since the modified MMSE criterion does not attempt to track the time-varying MMSE solution. Computer simulations verify that the performance of the proposed Rake receiver is better than those of the conventional and the adaptive Rake receiver

    Sensitivity of OFDM-CDMA systems to carrier frequency offset

    Get PDF
    6 pages;This paper presents the impact of a carrier frequency offset on the performance of 2 dimensional spreading OFDM-CDMA systems. This is measured by the degradation of the Signal to Interference plus Noise Ratio (SINR) obtained after despreading and equalization. Using some properties of random matrix and free probability theories, a new expression of the SINR is derived. It is independent of the actual value of the spreading codes while still accounting for the orthogonality between codes. This model is validated by means of Monte-Carlo simulations. . It is also exploited to compare the sensitivities of MC-CDMA and MC-DS-CDMA systems to carrier offset in a frequency selective channel. This work is carried out for zero forcing (ZF) and minimum mean square error (MMSE) equalizers

    Packet data communications over coded CDMA with hybrid type-II ARQ

    Get PDF
    This dissertation presents in-depth investigation of turbo-coded CDNIA systems in packet data communication terminology. It is divided into three parts; (1) CDMA with hybrid FEC/ARQ in deterministic environment, (2) CDMA with hybrid FEC/ARQ in random access environment and (3) an implementation issue on turbo decoding. As a preliminary, the performance of CDMA with hybrid FEC/ARQ is investigated in deterministic environment. It highlights the practically achievable spectral efficiency of CDMA system with turbo codes and the effect of code rates on the performance of systems with MF and LMMSE receivers, respectively. For given ensemble distance spectra of punctured turbo codes, an improved union bound is used to evaluate the error probability of ML turbo decoder with MF receiver and with LMMSE receiver front-end and, then, the corresponding spectral efficiency is computed as a function of system load. In the second part, a generalized analytical framework is first provided to analyze hybrid type-11 ARQ in random access environment. When applying hybrid type-11 ARQ, probability of packet success and packet length is generally different from attempt to attempt. Since the conventional analytical model, customarily employed for ALOHA system with pure or hybrid type-I ARQ, cannot be applied for this case, an expanded analytical model is introduced. It can be regarded as a network of queues and Jackson and Burke\u27s theorems can be applied to simplify the analysis. The second part is further divided into two sub topics, i.e. CDMA slotted ALOHA with hybrid type-11 ARQ using packet combining and CDMA unslotted ALOHA with hybrid type-11 ARQ using code combining. For code combining, the rate compatible punctured turbo (RCPT) codes are examined. In the third part, noticing that the decoding delay is crucial to the fast ARQ, a parallel MAP algorithm is proposed to reduce the computational decoding delay of turbo codes. It utilizes the forward and backward variables computed in the previous iteration to provide boundary distributions for each sub-block MAP decoder. It has at least two advantages over the existing parallel scheme; No performance degradation and No additional computation

    On multi-user EXIT chart analysis aided turbo-detected MBER beamforming designs

    No full text
    Abstract—This paper studies the mutual information transfer characteristics of a novel iterative soft interference cancellation (SIC) aided beamforming receiver communicating over both additive white Gaussian noise (AWGN) and multipath slow fading channels. Based on the extrinsic information transfer (EXIT) chart technique, we investigate the convergence behavior of an iterative minimum bit error rate (MBER) multiuser detection (MUD) scheme as a function of both the system parameters and channel conditions in comparison to the SIC aided minimum mean square error (SIC-MMSE) MUD. Our simulation results show that the EXIT chart analysis is sufficiently accurate for the MBER MUD. Quantitatively, a two-antenna system was capable of supporting up to K=6 users at Eb/N0=3dB, even when their angular separation was relatively low, potentially below 20?. Index Terms—Minimum bit error rate, beamforming, multiuser detection, soft interference cancellation, iterative processing, EXIT chart

    High Capacity CDMA and Collaborative Techniques

    Get PDF
    The thesis investigates new approaches to increase the user capacity and improve the error performance of Code Division Multiple Access (CDMA) by employing adaptive interference cancellation and collaborative spreading and space diversity techniques. Collaborative Coding Multiple Access (CCMA) is also investigated as a separate technique and combined with CDMA. The advantages and shortcomings of CDMA and CCMA are analysed and new techniques for both the uplink and downlink are proposed and evaluated. Multiple access interference (MAI) problem in the uplink of CDMA is investigated first. The practical issues of multiuser detection (MUD) techniques are reviewed and a novel blind adaptive approach to interference cancellation (IC) is proposed. It exploits the constant modulus (CM) property of digital signals to blindly suppress interference during the despreading process and obtain amplitude estimation with minimum mean squared error for use in cancellation stages. Two new blind adaptive receiver designs employing successive and parallel interference cancellation architectures using the CM algorithm (CMA) referred to as ‘CMA-SIC’ and ‘BA-PIC’, respectively, are presented. These techniques have shown to offer near single user performance for large number of users. It is shown to increase the user capacity by approximately two fold compared with conventional IC receivers. The spectral efficiency analysis of the techniques based on output signal-to interference-and-noise ratio (SINR) also shows significant gain in data rate. Furthermore, an effective and low complexity blind adaptive subcarrier combining (BASC) technique using a simple gradient descent based algorithm is proposed for Multicarrier-CDMA. It suppresses MAI without any knowledge of channel amplitudes and allows large number of users compared with equal gain and maximum ratio combining techniques normally used in practice. New user collaborative schemes are proposed and analysed theoretically and by simulations in different channel conditions to achieve spatial diversity for uplink of CCMA and CDMA. First, a simple transmitter diversity and its equivalent user collaborative diversity techniques for CCMA are designed and analysed. Next, a new user collaborative scheme with successive interference cancellation for uplink of CDMA referred to as collaborative SIC (C-SIC) is investigated to reduce MAI and achieve improved diversity. To further improve the performance of C-SIC under high system loading conditions, Collaborative Blind Adaptive SIC (C-BASIC) scheme is proposed. It is shown to minimize the residual MAI, leading to improved user capacity and a more robust system. It is known that collaborative diversity schemes incur loss in throughput due to the need of orthogonal time/frequency slots for relaying source’s data. To address this problem, finally a novel near-unity-rate scheme also referred to as bandwidth efficient collaborative diversity (BECD) is proposed and evaluated for CDMA. Under this scheme, pairs of users share a single spreading sequence to exchange and forward their data employing a simple superposition or space-time encoding methods. At the receiver collaborative joint detection is performed to separate each paired users’ data. It is shown that the scheme can achieve full diversity gain at no extra bandwidth as inter-user channel SNR becomes high. A novel approach of ‘User Collaboration’ is introduced to increase the user capacity of CDMA for both the downlink and uplink. First, collaborative group spreading technique for the downlink of overloaded CDMA system is introduced. It allows the sharing of the same single spreading sequence for more than one user belonging to the same group. This technique is referred to as Collaborative Spreading CDMA downlink (CS-CDMA-DL). In this technique T-user collaborative coding is used for each group to form a composite codeword signal of the users and then a single orthogonal sequence is used for the group. At each user’s receiver, decoding of composite codeword is carried out to extract the user’s own information while maintaining a high SINR performance. To improve the bit error performance of CS-CDMA-DL in Rayleigh fading conditions, Collaborative Space-time Spreading (C-STS) technique is proposed by combining the collaborative coding multiple access and space-time coding principles. A new scheme for uplink of CDMA using the ‘User Collaboration’ approach, referred to as CS-CDMA-UL is presented next. When users’ channels are independent (uncorrelated), significantly higher user capacity can be achieved by grouping multiple users to share the same spreading sequence and performing MUD on per group basis followed by a low complexity ML decoding at the receiver. This approach has shown to support much higher number of users than the available sequences while also maintaining the low receiver complexity. For improved performance under highly correlated channel conditions, T-user collaborative coding is also investigated within the CS-CDMA-UL system
    • 

    corecore