2,606 research outputs found

    Output Impedance Diffusion into Lossy Power Lines

    Get PDF
    Output impedances are inherent elements of power sources in the electrical grids. In this paper, we give an answer to the following question: What is the effect of output impedances on the inductivity of the power network? To address this question, we propose a measure to evaluate the inductivity of a power grid, and we compute this measure for various types of output impedances. Following this computation, it turns out that network inductivity highly depends on the algebraic connectivity of the network. By exploiting the derived expressions of the proposed measure, one can tune the output impedances in order to enforce a desired level of inductivity on the power system. Furthermore, the results show that the more "connected" the network is, the more the output impedances diffuse into the network. Finally, using Kron reduction, we provide examples that demonstrate the utility and validity of the method

    Design of Millimeter-wave Detector for Gyrotron Power Monitoring

    Full text link
    The real-time power monitoring of gyrotron is one of the key issues in the operation of electron cyclotron resonance heating system. The detector can be used for real-time power monitoring. We analyzed the principle of diode detection and designed a D-band wideband detector based on Schottky diode in this paper. The detector includes a waveguide-to-microstrip transition, a matching circuit, a diode, and a low pass filter. A novel waveguide-to-microstrip transition was developed based on probe coupling. A wideband lossy matching circuit was developed based on tapered-line and series matching resistor. The simulation results show that when the input power is -30dBm at 140 GHz, the detection sensitivity is about 1600V/W.Comment: 12 pages, 19 figure

    Integrated phased array systems in silicon

    Get PDF
    Silicon offers a new set of possibilities and challenges for RF, microwave, and millimeter-wave applications. While the high cutoff frequencies of the SiGe heterojunction bipolar transistors and the ever-shrinking feature sizes of MOSFETs hold a lot of promise, new design techniques need to be devised to deal with the realities of these technologies, such as low breakdown voltages, lossy substrates, low-Q passives, long interconnect parasitics, and high-frequency coupling issues. As an example of complete system integration in silicon, this paper presents the first fully integrated 24-GHz eight-element phased array receiver in 0.18-ÎŒm silicon-germanium and the first fully integrated 24-GHz four-element phased array transmitter with integrated power amplifiers in 0.18-ÎŒm CMOS. The transmitter and receiver are capable of beam forming and can be used for communication, ranging, positioning, and sensing applications

    Stability, Causality, and Passivity in Electrical Interconnect Models

    Get PDF
    Modern packaging design requires extensive signal integrity simulations in order to assess the electrical performance of the system. The feasibility of such simulations is granted only when accurate and efficient models are available for all system parts and components having a significant influence on the signals. Unfortunately, model derivation is still a challenging task, despite the extensive research that has been devoted to this topic. In fact, it is a common experience that modeling or simulation tasks sometimes fail, often without a clear understanding of the main reason. This paper presents the fundamental properties of causality, stability, and passivity that electrical interconnect models must satisfy in order to be physically consistent. All basic definitions are reviewed in time domain, Laplace domain, and frequency domain, and all significant interrelations between these properties are outlined. This background material is used to interpret several common situations where either model derivation or model use in a computer-aided design environment fails dramatically.We show that the root cause for these difficulties can always be traced back to the lack of stability, causality, or passivity in the data providing the structure characterization and/or in the model itsel

    Development of a high power microwave thruster, with a magnetic nozzle, for space applications

    Get PDF
    This paper describes the current development of a high-power microwave electrothermal thruster (MET) concept at the NASA Lewis Research Center. Such a thruster would be employed in space for applications such as orbit raining, orbit maneuvering, station change, and possibly trans-lunar or trans-planetary propulsion of spacecraft. The MET concept employs low frequency continuous wave (CW) microwave power to create and continuously pump energy into a flowing propellant gas at relative high pressure via a plasma discharge. The propellant is heated to very high bulk temperatures while passing through the plasma discharge region and then is expanded through a throat-nozzle assembly to produce thrust, as in a conventional rocket engine. Apparatus, which is described, is being assembled at NASA Lewis to test the MET concept to CW power levels of 30 kW at a frequency of 915 MHz. The microwave energy is applied in a resonant cavity applicator and is absorbed by a plasma discharge in the flowing propellant. The ignited plasma acts as a lossy load, and with optimal tuning, energy absorption efficiencies over 95 percent (based on the applied microwave power) are expected. Nitrogen, helium, and hydrogen will be tested as propellants in the MET, at discharge chamber pressures to 10 atm

    Current-Mode Techniques for the Implementation of Continuous- and Discrete-Time Cellular Neural Networks

    Get PDF
    This paper presents a unified, comprehensive approach to the design of continuous-time (CT) and discrete-time (DT) cellular neural networks (CNN) using CMOS current-mode analog techniques. The net input signals are currents instead of voltages as presented in previous approaches, thus avoiding the need for current-to-voltage dedicated interfaces in image processing tasks with photosensor devices. Outputs may be either currents or voltages. Cell design relies on exploitation of current mirror properties for the efficient implementation of both linear and nonlinear analog operators. These cells are simpler and easier to design than those found in previously reported CT and DT-CNN devices. Basic design issues are covered, together with discussions on the influence of nonidealities and advanced circuit design issues as well as design for manufacturability considerations associated with statistical analysis. Three prototypes have been designed for l.6-pm n-well CMOS technologies. One is discrete-time and can be reconfigured via local logic for noise removal, feature extraction (borders and edges), shadow detection, hole filling, and connected component detection (CCD) on a rectangular grid with unity neighborhood radius. The other two prototypes are continuous-time and fixed template: one for CCD and other for noise removal. Experimental results are given illustrating performance of these prototypes

    Nonlinear mechanisms in passive microwave devices

    Get PDF
    Premi extraordinari doctorat curs 2010-2011, àmbit d’Enginyeria de les TICThe telecommunications industry follows a tendency towards smaller devices, higher power and higher frequency, which imply an increase on the complexity of the electronics involved. Moreover, there is a need for extended capabilities like frequency tunable devices, ultra-low losses or high power handling, which make use of advanced materials for these purposes. In addition, increasingly demanding communication standards and regulations push the limits of the acceptable performance degrading indicators. This is the case of nonlinearities, whose effects, like increased Adjacent Channel Power Ratio (ACPR), harmonics, or intermodulation distortion among others, are being included in the performance requirements, as maximum tolerable levels. In this context, proper modeling of the devices at the design stage is of crucial importance in predicting not only the device performance but also the global system indicators and to make sure that the requirements are fulfilled. In accordance with that, this work proposes the necessary steps for circuit models implementation of different passive microwave devices, from the linear and nonlinear measurements to the simulations to validate them. Bulk acoustic wave resonators and transmission lines made of high temperature superconductors, ferroelectrics or regular metals and dielectrics are the subject of this work. Both phenomenological and physical approaches are considered and circuit models are proposed and compared with measurements. The nonlinear observables, being harmonics, intermodulation distortion, and saturation or detuning, are properly related to the material properties that originate them. The obtained models can be used in circuit simulators to predict the performance of these microwave devices under complex modulated signals, or even be used to predict their performance when integrated into more complex systems. A key step to achieve this goal is an accurate characterization of materials and devices, which is faced by making use of advanced measurement techniques. Therefore, considerations on special measurement setups are being made along this thesis.Award-winningPostprint (published version
    • 

    corecore