8,018 research outputs found

    Log-based Anomaly Detection of CPS Using a Statistical Method

    Full text link
    Detecting anomalies of a cyber physical system (CPS), which is a complex system consisting of both physical and software parts, is important because a CPS often operates autonomously in an unpredictable environment. However, because of the ever-changing nature and lack of a precise model for a CPS, detecting anomalies is still a challenging task. To address this problem, we propose applying an outlier detection method to a CPS log. By using a log obtained from an actual aquarium management system, we evaluated the effectiveness of our proposed method by analyzing outliers that it detected. By investigating the outliers with the developer of the system, we confirmed that some outliers indicate actual faults in the system. For example, our method detected failures of mutual exclusion in the control system that were unknown to the developer. Our method also detected transient losses of functionalities and unexpected reboots. On the other hand, our method did not detect anomalies that were too many and similar. In addition, our method reported rare but unproblematic concurrent combinations of operations as anomalies. Thus, our approach is effective at finding anomalies, but there is still room for improvement

    A Local Density-Based Approach for Local Outlier Detection

    Full text link
    This paper presents a simple but effective density-based outlier detection approach with the local kernel density estimation (KDE). A Relative Density-based Outlier Score (RDOS) is introduced to measure the local outlierness of objects, in which the density distribution at the location of an object is estimated with a local KDE method based on extended nearest neighbors of the object. Instead of using only kk nearest neighbors, we further consider reverse nearest neighbors and shared nearest neighbors of an object for density distribution estimation. Some theoretical properties of the proposed RDOS including its expected value and false alarm probability are derived. A comprehensive experimental study on both synthetic and real-life data sets demonstrates that our approach is more effective than state-of-the-art outlier detection methods.Comment: 22 pages, 14 figures, submitted to Pattern Recognition Letter

    Implementation and assessment of two density-based outlier detection methods over large spatial point clouds

    Get PDF
    Several technologies provide datasets consisting of a large number of spatial points, commonly referred to as point-clouds. These point datasets provide spatial information regarding the phenomenon that is to be investigated, adding value through knowledge of forms and spatial relationships. Accurate methods for automatic outlier detection is a key step. In this note we use a completely open-source workflow to assess two outlier detection methods, statistical outlier removal (SOR) filter and local outlier factor (LOF) filter. The latter was implemented ex-novo for this work using the Point Cloud Library (PCL) environment. Source code is available in a GitHub repository for inclusion in PCL builds. Two very different spatial point datasets are used for accuracy assessment. One is obtained from dense image matching of a photogrammetric survey (SfM) and the other from floating car data (FCD) coming from a smart-city mobility framework providing a position every second of two public transportation bus tracks. Outliers were simulated in the SfM dataset, and manually detected and selected in the FCD dataset. Simulation in SfM was carried out in order to create a controlled set with two classes of outliers: clustered points (up to 30 points per cluster) and isolated points, in both cases at random distances from the other points. Optimal number of nearest neighbours (KNN) and optimal thresholds of SOR and LOF values were defined using area under the curve (AUC) of the receiver operating characteristic (ROC) curve. Absolute differences from median values of LOF and SOR (defined as LOF2 and SOR2) were also tested as metrics for detecting outliers, and optimal thresholds defined through AUC of ROC curves. Results show a strong dependency on the point distribution in the dataset and in the local density fluctuations. In SfM dataset the LOF2 and SOR2 methods performed best, with an optimal KNN value of 60; LOF2 approach gave a slightly better result if considering clustered outliers (true positive rate: LOF2\u2009=\u200959.7% SOR2\u2009=\u200953%). For FCD, SOR with low KNN values performed better for one of the two bus tracks, and LOF with high KNN values for the other; these differences are due to very different local point density. We conclude that choice of outlier detection algorithm very much depends on characteristic of the dataset\u2019s point distribution, no one-solution-fits-all. Conclusions provide some information of what characteristics of the datasets can help to choose the optimal method and KNN values

    A novel double-hybrid learning method for modal frequency-based damage assessment of bridge structures under different environmental variation patterns

    Get PDF
    Monitoring of modal frequencies under an unsupervised learning framework is a practical strategy for damage assessment of civil structures, especially bridges. However, the key challenge is related to high sensitivity of modal frequencies to environmental and/or operational changes that may lead to economic and safety losses. The other challenge pertains to different environmental and/or operational variation patterns in modal frequencies due to differences in structural types, materials, and applications, measurement periods in terms of short and/or long monitoring programs, geographical locations of structures, weather conditions, and influences of single or multiple environmental and/or operational factors, which may cause barriers to employing stateof-the-art unsupervised learning approaches. To cope with these issues, this paper proposes a novel double-hybrid learning technique in an unsupervised manner. It contains two stages of data partitioning and anomaly detection, both of which comprise two hybrid algorithms. For the first stage, an improved hybrid clustering method based on a coupling of shared nearest neighbor searching and density peaks clustering is proposed to prepare local information for anomaly detection with the focus on mitigating environmental and/or operational effects. For the second stage, this paper proposes an innovative non-parametric hybrid anomaly detector based on local outlier factor. In both stages, the number of nearest neighbors is the key hyperparameter that is automatically determined by leveraging a self-adaptive neighbor searching algorithm. Modal frequencies of two full-scale bridges are utilized to validate the proposed technique with several comparisons. Results indicate that this technique is able to successfully eliminate different environmental and/or operational variations and correctly detect damage

    Attribute Relationship Analysis in Outlier Mining and Stream Processing

    Get PDF
    The main theme of this thesis is to unite two important fields of data analysis, outlier mining and attribute relationship analysis. In this work we establish the connection between these two fields. We present techniques which exploit this connection, allowing to improve outlier detection in high dimensional data. In the second part of the thesis we extend our work to the emerging topic of data streams

    Nonrigid Registration of Brain Tumor Resection MR Images Based on Joint Saliency Map and Keypoint Clustering

    Get PDF
    This paper proposes a novel global-to-local nonrigid brain MR image registration to compensate for the brain shift and the unmatchable outliers caused by the tumor resection. The mutual information between the corresponding salient structures, which are enhanced by the joint saliency map (JSM), is maximized to achieve a global rigid registration of the two images. Being detected and clustered at the paired contiguous matching areas in the globally registered images, the paired pools of DoG keypoints in combination with the JSM provide a useful cluster-to-cluster correspondence to guide the local control-point correspondence detection and the outlier keypoint rejection. Lastly, a quasi-inverse consistent deformation is smoothly approximated to locally register brain images through the mapping the clustered control points by compact support radial basis functions. The 2D implementation of the method can model the brain shift in brain tumor resection MR images, though the theory holds for the 3D case
    corecore