1,016 research outputs found

    Point triangulation through polyhedron collapse using the l∞ norm

    Get PDF
    Multi-camera triangulation of feature points based on a minimisation of the overall l(2) reprojection error can get stuck in suboptimal local minima or require slow global optimisation. For this reason, researchers have proposed optimising the l(infinity) norm of the l(2) single view reprojection errors, which avoids the problem of local minima entirely. In this paper we present a novel method for l(infinity) triangulation that minimizes the l(infinity) norm of the l(infinity) reprojection errors: this apparently small difference leads to a much faster but equally accurate solution which is related to the MLE under the assumption of uniform noise. The proposed method adopts a new optimisation strategy based on solving simple quadratic equations. This stands in contrast with the fastest existing methods, which solve a sequence of more complex auxiliary Linear Programming or Second Order Cone Problems. The proposed algorithm performs well: for triangulation, it achieves the same accuracy as existing techniques while executing faster and being straightforward to implement

    An adversarial optimization approach to efficient outlier removal

    Get PDF
    This paper proposes a novel adversarial optimization approach to efficient outlier removal in computer vision. We characterize the outlier removal problem as a game that involves two players of conflicting interests, namely, optimizer and outlier. Such an adversarial view not only brings new insights into various existing methods, but also gives rise to a general optimization framework that provably unifies them. Under the proposed framework, we develop a new outlier removal approach that is able to offer a much needed control over the trade-off between reliability and speed, which is otherwise not available in previous methods. The proposed approach is driven by a mixed-integer minmax (convex-concave) optimization process. Although a minmax problem is generally not amenable to efficient optimization, we show that for some commonly used vision objective functions, an equivalent Linear Program reformulation exists. We demonstrate our method on two representative multiview geometry problems. Experiments on real image data illustrate superior practical performance of our method over recent techniques.Jin Yu, Anders Eriksson, Tat-Jun Chin, David Suterhttp://www.iccv2011.org

    Linear Global Translation Estimation with Feature Tracks

    Full text link
    This paper derives a novel linear position constraint for cameras seeing a common scene point, which leads to a direct linear method for global camera translation estimation. Unlike previous solutions, this method deals with collinear camera motion and weak image association at the same time. The final linear formulation does not involve the coordinates of scene points, which makes it efficient even for large scale data. We solve the linear equation based on L1L_1 norm, which makes our system more robust to outliers in essential matrices and feature correspondences. We experiment this method on both sequentially captured images and unordered Internet images. The experiments demonstrate its strength in robustness, accuracy, and efficiency.Comment: Changes: 1. Adopt BMVC2015 style; 2. Combine sections 3 and 5; 3. Move "Evaluation on synthetic data" out to supplementary file; 4. Divide subsection "Evaluation on general data" to subsections "Experiment on sequential data" and "Experiment on unordered Internet data"; 5. Change Fig. 1 and Fig.8; 6. Move Fig. 6 and Fig. 7 to supplementary file; 7 Change some symbols; 8. Correct some typo
    • …
    corecore