2,226 research outputs found

    Detecting outlying subspaces for high-dimensional data: the new task, algorithms and performance

    Get PDF
    [Abstract]: In this paper, we identify a new task for studying the outlying degree (OD) of high-dimensional data, i.e. finding the subspaces (subsets of features) in which the given points are outliers, which are called their outlying subspaces. Since the state-of-the-art outlier detection techniques fail to handle this new problem, we propose a novel detection algorithm, called High-Dimension Outlying subspace Detection (HighDOD), to detect the outlying subspaces of high-dimensional data efficiently. The intuitive idea of HighDOD is that we measure the OD of the point using the sum of distances between this point and its k nearest neighbors. Two heuristic pruning strategies are proposed to realize fast pruning in the subspace search and an efficient dynamic subspace search method with a sample-based learning process has been implemented. Experimental results show that HighDOD is efficient and outperforms other searching alternatives such as the naive top–down, bottom–up and random search methods, and the existing outlier detection methods cannot fulfill this new task effectively

    A taxonomy framework for unsupervised outlier detection techniques for multi-type data sets

    Get PDF
    The term "outlier" can generally be defined as an observation that is significantly different from the other values in a data set. The outliers may be instances of error or indicate events. The task of outlier detection aims at identifying such outliers in order to improve the analysis of data and further discover interesting and useful knowledge about unusual events within numerous applications domains. In this paper, we report on contemporary unsupervised outlier detection techniques for multiple types of data sets and provide a comprehensive taxonomy framework and two decision trees to select the most suitable technique based on data set. Furthermore, we highlight the advantages, disadvantages and performance issues of each class of outlier detection techniques under this taxonomy framework

    Cluster Evaluation of Density Based Subspace Clustering

    Full text link
    Clustering real world data often faced with curse of dimensionality, where real world data often consist of many dimensions. Multidimensional data clustering evaluation can be done through a density-based approach. Density approaches based on the paradigm introduced by DBSCAN clustering. In this approach, density of each object neighbours with MinPoints will be calculated. Cluster change will occur in accordance with changes in density of each object neighbours. The neighbours of each object typically determined using a distance function, for example the Euclidean distance. In this paper SUBCLU, FIRES and INSCY methods will be applied to clustering 6x1595 dimension synthetic datasets. IO Entropy, F1 Measure, coverage, accurate and time consumption used as evaluation performance parameters. Evaluation results showed SUBCLU method requires considerable time to process subspace clustering; however, its value coverage is better. Meanwhile INSCY method is better for accuracy comparing with two other methods, although consequence time calculation was longer.Comment: 6 pages, 15 figure

    Detecting outlying subspaces for high-dimensional data: a heuristic search approach

    Get PDF
    [Abstract]: In this paper, we identify a new task for studying the out-lying degree of high-dimensional data, i.e. finding the sub-spaces (subset of features) in which given points are out-liers, and propose a novel detection algorithm, called High-D Outlying subspace Detection (HighDOD). We measure the outlying degree of the point using the sum of distances between this point and its k nearest neighbors. Heuristic pruning strategies are proposed to realize fast pruning in the subspace search and an efficient dynamic subspace search method with a sample-based learning process has been im- plemented. Experimental results show that HighDOD is efficient and outperforms other searching alternatives such as the naive top-down, bottom-up and random search methods. Points in these sparse subspaces are assumed to be the outliers. While knowing which data points are the outliers can be useful, in many applications, it is more important to identify the subspaces in which a given point is an outlier, which motivates the proposal of a new technique in this paper to handle this new task

    Outlier Detection from Network Data with Subnetwork Interpretation

    Full text link
    Detecting a small number of outliers from a set of data observations is always challenging. This problem is more difficult in the setting of multiple network samples, where computing the anomalous degree of a network sample is generally not sufficient. In fact, explaining why the network is exceptional, expressed in the form of subnetwork, is also equally important. In this paper, we develop a novel algorithm to address these two key problems. We treat each network sample as a potential outlier and identify subnetworks that mostly discriminate it from nearby regular samples. The algorithm is developed in the framework of network regression combined with the constraints on both network topology and L1-norm shrinkage to perform subnetwork discovery. Our method thus goes beyond subspace/subgraph discovery and we show that it converges to a global optimum. Evaluation on various real-world network datasets demonstrates that our algorithm not only outperforms baselines in both network and high dimensional setting, but also discovers highly relevant and interpretable local subnetworks, further enhancing our understanding of anomalous networks

    FRIOD: a deeply integrated feature-rich interactive system for effective and efficient outlier detection

    Get PDF
    In this paper, we propose an novel interactive outlier detection system called feature-rich interactive outlier detection (FRIOD), which features a deep integration of human interaction to improve detection performance and greatly streamline the detection process. A user-friendly interactive mechanism is developed to allow easy and intuitive user interaction in all the major stages of the underlying outlier detection algorithm which includes dense cell selection, location-aware distance thresholding, and final top outlier validation. By doing so, we can mitigate the major difficulty of the competitive outlier detection methods in specifying the key parameter values, such as the density and distance thresholds. An innovative optimization approach is also proposed to optimize the grid-based space partitioning, which is a critical step of FRIOD. Such optimization fully considers the high-quality outliers it detects with the aid of human interaction. The experimental evaluation demonstrates that FRIOD can improve the quality of the detected outliers and make the detection process more intuitive, effective, and efficient
    corecore