842 research outputs found

    Outer Bounds on the Admissible Source Region for Broadcast Channels with Correlated Sources

    Full text link
    Two outer bounds on the admissible source region for broadcast channels with correlated sources are presented: the first one is strictly tighter than the existing outer bound by Gohari and Anantharam while the second one provides a complete characterization of the admissible source region in the case where the two sources are conditionally independent given the common part. These outer bounds are deduced from the general necessary conditions established for the lossy source broadcast problem via suitable comparisons between the virtual broadcast channel (induced by the source and the reconstructions) and the physical broadcast channel

    Simulation of a Channel with Another Channel

    Full text link
    In this paper, we study the problem of simulating a DMC channel from another DMC channel under an average-case and an exact model. We present several achievability and infeasibility results, with tight characterizations in special cases. In particular for the exact model, we fully characterize when a BSC channel can be simulated from a BEC channel when there is no shared randomness. We also provide infeasibility and achievability results for simulation of a binary channel from another binary channel in the case of no shared randomness. To do this, we use properties of R\'enyi capacity of a given order. We also introduce a notion of "channel diameter" which is shown to be additive and satisfy a data processing inequality.Comment: 31 pages, 10 figures, and some parts of this work were published at ITW 201

    Asymptotic Estimates in Information Theory with Non-Vanishing Error Probabilities

    Full text link
    This monograph presents a unified treatment of single- and multi-user problems in Shannon's information theory where we depart from the requirement that the error probability decays asymptotically in the blocklength. Instead, the error probabilities for various problems are bounded above by a non-vanishing constant and the spotlight is shone on achievable coding rates as functions of the growing blocklengths. This represents the study of asymptotic estimates with non-vanishing error probabilities. In Part I, after reviewing the fundamentals of information theory, we discuss Strassen's seminal result for binary hypothesis testing where the type-I error probability is non-vanishing and the rate of decay of the type-II error probability with growing number of independent observations is characterized. In Part II, we use this basic hypothesis testing result to develop second- and sometimes, even third-order asymptotic expansions for point-to-point communication. Finally in Part III, we consider network information theory problems for which the second-order asymptotics are known. These problems include some classes of channels with random state, the multiple-encoder distributed lossless source coding (Slepian-Wolf) problem and special cases of the Gaussian interference and multiple-access channels. Finally, we discuss avenues for further research.Comment: Further comments welcom

    On Joint Source-Channel Coding for Correlated Sources Over Multiple-Access Relay Channels

    Get PDF
    We study the transmission of correlated sources over discrete memoryless (DM) multiple-access-relay channels (MARCs), in which both the relay and the destination have access to side information arbitrarily correlated with the sources. As the optimal transmission scheme is an open problem, in this work we propose a new joint source-channel coding scheme based on a novel combination of the correlation preserving mapping (CPM) technique with Slepian-Wolf (SW) source coding, and obtain the corresponding sufficient conditions. The proposed coding scheme is based on the decode-and-forward strategy, and utilizes CPM for encoding information simultaneously to the relay and the destination, whereas the cooperation information from the relay is encoded via SW source coding. It is shown that there are cases in which the new scheme strictly outperforms the schemes available in the literature. This is the first instance of a source-channel code that uses CPM for encoding information to two different nodes (relay and destination). In addition to sufficient conditions, we present three different sets of single-letter necessary conditions for reliable transmission of correlated sources over DM MARCs. The newly derived conditions are shown to be at least as tight as the previously known necessary conditions.Comment: Accepted to TI
    • …
    corecore