1,167 research outputs found

    Outdoor-to-indoor office MIMO measurements and analysis at 5.2 GHz

    Get PDF
    The outdoor-to-indoor wireless propagation channel is of interest for cellular and wireless local area network applications. This paper presents the measurement results and analysis based on our multiple-input-multiple-output (MIMO) measurement campaign, which is one of the first to characterize the outdoor-to-indoor channel. The measurements were performed at 5.2 GHz; the receiver was placed indoors at 53 different locations in an office building, and the transmitter was placed at three ”base stations ” positions on a nearby rooftop. We report on the root-mean-square (RMS) angular spread, building penetration, and other statistical parameters that characterize the channel. Our analysis is focused on three MIMO channel assumptions often used in stochastic models. 1) It is commonly assumed that the channel matrix can be represented as a sum of a line-of-sight (LOS) contribution and a zero-mean complex Gaussian distribution. Our investigation shows that this model does not adequately represent our measurement data. 2) It is often assumed that the Rician K-factor is equal to the power ratio of the LOS component and the other multipath components (MPCs). We show that this is not the case, and we highlight the difference between the Rician K-factor often associated with LOS channels and a similar power ratio for th

    Outdoor-to-Indoor Office MIMO Measurements and Analysis at 5.2 GHz

    Full text link

    Second order statistics of NLOS indoor MIMO channels based on 5.2 GHz measurements

    Get PDF
    This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available

    Modeling of wide-band MIMO radio channels based on NLoS indoor measurements

    Get PDF
    Link to published version (if available)

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter

    Characterization of Single- and Multi-antenna Wireless Channels

    Get PDF
    The wireless propagation channel significantly influences the received signal, so that it needs to be modeled effectively. Extensive measurements and analysis are required for investigating the validity of theoretical models and postulating new models based on measurements. Such measurements, analysis, and modeling are the topic of this thesis. The focus of the included contributions are Multiple-Input Multiple-Output (MIMO) propagation channels and radio channels for sensor network applications. Paper I presents results from one of the first MIMO measurements for a double-directional characterization of the outdoor-to-indoor wireless propagation channel. Such channels are of interest for both cellular and wireless LAN applications. We discuss physical aspects of building penetration, and also provide statistics of angle and delay spreads in the channel. The paper also investigates the coupling between DOD and DOA and the two spectra are found to have non-negligible dependence. We test the applicability of three analytical channel models that make different assumptions on the coupling between DODs and DOAs. Our results indicate that analytical models, that impose fewer restrictions on the DOD to DOA coupling, should be used preferrably over models such as the Kronecker model that have more restrictive assumptions. Paper II presents a cluster-based analysis of the outdoor-to-indoor MIMO measurements analyzed in Paper I. A subset of parameters of the COST 273 channel model, a generic model for MIMO propagation channels, are characterized for the outdoor-to-indoor scenario. MPC parameters are extracted at each measured location using a high-resolution algorithm and clusters of MPCs are identified with an automated clustering approach. In particular, the adopted clustering approach requires that all MPC parameters must be similar in order for the MPCs to form a cluster. A statistical analysis of the identified clusters is performed for both the intra- and inter-cluster properties. Paper III analyzes the spatial fading distribution for a range of canonical sensor deployment scenarios. The presented results are relevant to communicating within, and between, clusters of nodes. Contrary to the widely accepted assumption in published literature that the channel is AWGN at a small-enough distance, our measurements indicate that values of the Rice factor do not, in general, increase monotonically as the Tx-Rx distance is reduced. A probability mixture model is presented, with distance dependent parameters, to account for the distance dependent variations of the Rice factor. A simulation model that includes small- and large-scale fading effects is presented. According to the modeling approach, a sensor node placed anywhere within the spatial extent of a small-scale region will experience the channel statistics applicable to that region. Paper IV presents results characterizing a radio channel for outdoor short-range sensor networks. A number of antennas are placed on the ground in an open area and time-variation of the channel is induced by a person moving in the vicinity of the nodes. The channel statistics of both the LOS path and the overall narrowband signal are non-stationary. We investigate the stationarity interval length to be used for small-scale analysis. Our analysis of the various measured links shows that the Rx signal strength is significantly influenced by a moving person only when the person blocks the LOS path. We present a generic approach for modeling the LOS blockage, and also model the time-variant Doppler spectrum of the channel's scattered components

    Comparison of MIMO channels from multipath parameter extraction and direct channel measurements

    Get PDF

    A slot antenna array with low mutual coupling for use on small mobile terminals

    Get PDF

    Dual-Polarized Ricean MIMO Channels: Modeling and Performance Assessment

    Full text link
    In wireless communication systems, dual-polarized (DP) instead of single-polarized (SP) multiple-input multiple-output (MIMO) transmission is used to improve the spectral efficiency under certain conditions on the channel and the signal-to-noise ratio (SNR). In order to identify these conditions, we first propose a novel channel model for DP mobile Ricean MIMO channels for which statistical channel parameters are readily obtained from a moment-based channel decomposition. Second, we derive an approximation of the mutual information (MI), which can be expressed as a function of those statistical channel parameters. Based on this approximation, we characterize the required SNR for a DP MIMO system to outperform an SP MIMO system in terms of the MI. Finally, we apply our results to channel measurements at 2.53 GHz. We find that, using the proposed channel decomposition and the approximation of the MI, we are able to reproduce the (practically relevant) SNR values above which DP MIMO systems outperform SP MIMO systems.Comment: submitted to the IEEE Transactions on Communication
    • 

    corecore